

impulse turbines -Pelton wheels

Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

Construction and Component

Installation

Velocity Triangle

Euler Equation:

 $W/m = U_1 C_{x1} - U_2 C_{x2}$

$$W/m = U\{(U + W_1) + [W_2 \cos(180^\circ - \alpha) - U]\}$$

Assume no loss of relative velocity, $W_1 = W_2$

$$W/m = U(W_1 - W_1 \cos \alpha)$$

$$E = U(C_1 - U)(1 - \cos \alpha)/g$$

For maximum $E \rightarrow dE/dU = 0$ $C_1 = 2U$ $U = C_1/2$

$$E_{\max} = C_1^2 (1 - \cos \alpha)/4g$$

Velocity Triangle

In practice :

Surface friction of the bucket $\rightarrow W_2 \neq W_1$

$$E = U(C_1 - U)(1 - k\cos\alpha)/g$$

k is the relative velocity ratio W_2/W_1

Losses and Efficiency

Pipeline transmission efficiency \rightarrow pipeline losses, h_f

	$\eta_{\scriptscriptstyle trans} =$	energy at end of pipeline	$- \frac{\left(H_1 - h_f\right)}{\left(H_1 - h_f\right)}$	_ <u>_</u>
		energy available at reservoir	$-H_1$	$\overline{H_1}$

Nozzle efficiency \rightarrow nozzle losses, h_{in}

$$\eta_N = \frac{\text{energy at nozzle outlet}}{\text{energy at nozzle inlet}} = \frac{\left(H_1 - h_f - h_{in}\right)}{\left(H_1 - h_f\right)} = \frac{\left(H - h_{in}\right)}{H} = \frac{H'}{H}$$

Energy available in jet at nozzle outlet : $|H' = C_1^2/2g|$

Nozzle velocity coefficient

 $C_{v} = \frac{\text{actual jet velocity at nozzle outlet}}{\text{theoretical jet velocity at nozzle inlet}} = \frac{C_{1}}{\sqrt{2gH}}$

 $high \eta_N = C_v^2$

Hydraulic efficiency

$$\eta_{H} = \frac{\text{energy transferred}}{\text{energy available in jet at nozzle outlet}} = \frac{E}{H'} = \frac{E}{\left(C_{1}^{2}/2g\right)}$$

Losses and Efficiency

Overall Efficiency

$$\eta_o = \frac{\text{Power developed by the turbine}}{\text{Power available at nozzle inlet}} = \frac{P}{\rho g Q H}$$

Turbine discharge, Q

$$Q = (\text{nozzlearea})(\text{actual jet velocity at nozzle outlet})$$
$$= AC_1 = (\pi d^2/4)C_1$$

d = nozzle diameter

Example

A Pelton turbine develops 2000 kW under a head of 100 m and with an overall efficiency of 85%. The coefficient of velocity for the nozzle is 0.98. Determine:

(a) The theoretical velocity of the jet ?

(b) The actual velocity of the jet ?

(c) The flow rate ?

(d) The diameter of the nozzle

Solution:

Given: P = 2000 kW; H = 100 m; $\eta_o = 0.85$; $C_v = 0.98$ Let : d = diameter of the nozzle; Q = discharge flow rate of the turbine

(a) The theoretical velocity of the jet

$$C_{theo} = \sqrt{2gH} = \sqrt{2(9.81)(100)} = 44.3 \text{ m/s}$$

(b) The actual velocity of the jet

$$C_{v} = \frac{C_{1}}{\sqrt{2gH}}$$

$$\Rightarrow C_{1} = C_{v}\sqrt{2gH} = C_{v}C_{theo} = (0.98)(44.3) = 43.4 m/s$$

Example

(c) The flow rate

$$\eta_o = \frac{P}{\rho g Q H}$$

$$\Rightarrow Q = \frac{P}{\rho g H \eta_o} = \frac{2000.10^3}{(10^3)(9.81)(100)(0.85)} = 2.4 \ m^3 / s$$

(d) The diameter of the nozzle

$$Q = AC_1 = (\pi d^2/4)C_1$$

$$\Rightarrow d = \sqrt{\frac{4Q}{\pi C_1}} = \sqrt{\frac{4(2.4)}{\pi (43.4)}} = 0.265 m$$

Design of Pelton Wheels

Pelton wheel is designed with the following input:

- 1. Head of water
- 2. Power to be developed
- 3. Speed of the runner

Pelton wheel is designed to find out the following data:

- 1. Diameter of the wheel (D)
- 2. Diameter of the jet (d)
- 3. Size (i.e. width and depth) of the buckets
- 4. Number of buckets (z)

Pelton wheel is usually designed with the following assumption:

- 1. Overall efficiency, η_o between 80% and 87%
- 2. Coefficient of velocity, C_v as 0.98 to 0.99
- 3. Ratio of peripheral velocity to the jet velocity, U/C_1 as 0.43 to 0.48

Design of Pelton Wheels

Size of the buckets

Number of the buckets (z)

Theoretical :

$$z = 360^{\circ}/\alpha$$

where:

$$\cos \alpha = \frac{R + 0.5d}{R + 0.6d}$$
$$R = D/2$$

Empirical:

$$z = 15 + \frac{D}{2d}$$

Characteristics Curves

Load Changes

In practice :

U must remain constant when the load changes \rightarrow to maintain maximum efficiency *U*/*C*₁ must stay the same \rightarrow change the input of water power \rightarrow change in *Q* \rightarrow change in nozzle area *A*

Load Control : spear valve and deflector plate

Load Changes

