

FUNDAMENTALS OF POWER PLANTS

Asko Vuorinen

Engine cycles

Carnot Cycle

- Otto Cycle
- o Diesel Cycle
- o Brayton Cycle
- o Rankine Cycle
- Combined Cycles

Carnot Engine

CARNOT - ENGINE

Carnot Cycle

T-S Diagram

P-V Diagram

Carnot Cycle, continued

 Ideal gas cycle, discovered by French engineer Sadi Carnot in 1824

 Heat is added at constant temperature T₁

 Heat is discharged at constant temperature T₂

Carnot Cycle, continued

Efficiency

$$\eta = 1 - T_2/T_1$$

The work done is area W in diagram

Higher the T_1 and lower T_2 more work can be done by the Carnot engine

Otto Cycle

T-S Diagram

Otto Cycle, continued

- Nicolaus Otto discoverd spark ignition (SI) four stroke gas engine 1876
- Heat is added in constant volume V₁ at top dead center (TDC) by igniting gas air mixture by spark
- Heat is discharged at constant volume
 V₂ at botton dead center (BDC)

Otto Cycle, continued

Efficiency of Otto Engine

 $\eta = 1 - 1/r^{k-1}$

where

- $r = compression ratio = V_2/V_1$
- k= gas constant

Otto Cycle, continued

- Spark ignition (SI) engines are most built engines in the world
- About 40 million engines/a for cars (200 000 MW)
- About 4000 engines/a for power plants (4000 MW/a)

Diesel Cycle

T-S Diagram

t Q₁ 2 3 4 4 1 V₂ V₁ P-V Diagram

Diesel Cycle, continued

- Rudolf Diesel outlined Diesel engine in 1892 in his patent
- Heat is added at constant pressure and discharged at constant volume
- Ignition happens by self ignition by injecting fuel at top dead center
- Some call Diesel engines as compression ignion (CI) engines

Diesel Cycle, continued

Efficiency $\eta = 1 - 1 / r^{k-1} (r_c^k - 1) / (k(r_c-1))$ where $r = \text{comperssion ratio} = V_2 / V_1$ $rc = \text{cut off ratio} = V_3 / V_2$ note If r is the same, Diesel cycle has lower

efficiency than Otto cycle

Diesel Cycle, continued

- Diesel engines are most built energy conversion machines after SI-engines
- Car industry builds about 20 million/a diesel cars and trucks (200000 MW/a)
- o > 90 % market share in large ships
- Power plant orders are 30 000 MW/a

Brayton Cycle

15

Brayton Cycle

Brayton Cycle

- Heat is added and discharged at constant pressure
- Applied in Gas Turbines (GT) (Combustion Turbines in US)

Brayton Cycle, continued

Efficiency

$$\eta = 1 - 1/r_{p}^{(k-1)/k}$$

where

 $r_p = compressor pressure ratio = p_2/p_1$ k = gas constant

Brayton cycle, continued

- Gas turbines are number third power conversion machines after SI- and CIengines
- > 90 % market share in large airplanes
- Power plant orders are 40 000 MW/a

Rankine Cycle, continued

- Scottish engineer William Rankine (1820-1872) developed a theory of steam cycles
- Heat is added in a water boiler, where the water becomes steam
- Steam is fed to a steam turbine, which generates mechanical energy
- After turbine the steam becomes water again in a condenser

Rankine cycle, continued

- The efficiency varies from 20 % in small subcritical steam turbines to 45 % in large double reaheat supercritical steam turbines
- The rankine cycle is ideal for solid fuel (coal, wood) power plants

Rankine cycle, continued

- Steam turbines are most sold machines for power plants as measured in output (100 000 MW/a)
- They are used in coal fired, nuclear and combined cycle power plants
- Coal and nuclear plants generate about 50 % of world electricity

Gas turbine combined cycle

GAS TURBINE COMBINED CYCLE

Gas Turbine Combined Cycle

- About 66 % of power is generated in gas turbine and 34 % in steam turbine
- Efficiency of GTCC plant is typically 1.5 times the efficiency of the single cycle gas turbine plant

IC Engine Combined Cycle

IC-ENGINE COMBINED CYCLE

IC Engine Combined Cycle

- Combines a Internal combustion Engine (Diesel or Otto cycle) and steam turbine (Rankine Cycle)
- About 90 % of power is generated in gas turbine and 10 % in steam turbine
- Efficiency of GTCC plant is typically 1.1 times the efficiency of the single cycle IC engine plant

Electrical efficiency

Efficiency $\eta = (P - P_{aux})/Q \times K_t \times K_l$

where

- P = electrical output
- P_{aux} = auxiliary power consumption
- Q = heat output
- K_t = temperature correction factor
- K_{I} = part load correction factor

Efficiency correction factor for ambient temperature

Efficiency correction factor for part load operation

Classification of power plants by place of combustion

- Internal combustion engines
 - Diesel engines
 - Gas engines
 - Dual-fuel engines
- External combustion engines
 - Steam engines
 - Stirling engines
 - Gas turbines
 - Steam turbines

Classification of internal combustion engines

- By speed or rotation
 - Low speed < 300 r/min (ship engines)
 - Medium speed 300 1000 r/min (power plants)
 - High speed > 1000 r/min (Standby power plants and cars)
- By number of strokes
 - 2 stroke (large ships)
 - 4 stroke (power plants and cars)

Classification of internal combustion engines, continued

• By type of combustion

- Lean burn (lambda > 1.2 -2.2)
- Stoichiometric (lambda = 1)
- By combustion chamber
 - Open chamber
 - Pre-chamber

Classification of internal combustion engines, continued

By fuel

- Heavy fuel oil (HFO)
- Light fuel oil (LFO)
- Liquid bio fuel (LBF)
- Natural gas (NG)
- Dual-fuel (NG/LFO)
- Tri-fuel (NG/LFO/HFO)
- Multi-fuel (NG/LFO/HFO/LBF)

Classification of gas turbines

- Industrial (single shaft)
- Aeroderivative (two shaft)
- Microturbines (50 200 kW)
- o By fuel
 - Light fuel oil (LFO)
 - Natural gas (NG)
 - Dual-fuel (NG/LFO)

Classification of steam turbine power plants

o By steam parameters

- Subcritical (400 540 °C, 10 -150 bar)
- Supercritical (600 °C, 240 bar)

o By fuel

- Coal, lignite, biomass
- Heavy fuel oil (HFO)
- Dual-fuel (gas/HFO)

Classification of nuclear power plants

- By type of nuclear reaction
 - Fission (splitting U₂₃₅ atoms)
 - Fusion (fusion of deuterium and tritium)
- By energy of neutrons in chain reaction
 - Fast reactors (fast neutrons)
 - Thermal reactors ("slow neutrons")

Classification of thermal reactors

- By moderator (slow down of neutrons)
 - Water
 - Graphite
- By cooling media
 - Water
 - Helium

Classification of water cooled reactors

o Pressurised water

- Toshiba (Westinghouse), Mitsubishi (Japan), Areva (France), Rosatom (Russia)
- o Boiling water
 - General Electric (USA)
- o Heavy water
 - AECL (Canada)

Operating parameters

- o Start-up time (minute)
- Maximum step change (%/5-30 s)
- Ramp rate (change in minute)
- o Emissions

Start-up time

• Diesel engines

- Gas engines
- o Aeroderivative GT
- Industrial GT
- o GT Combined Cycle
- Steam turbine plants

- 1 5 min
- 5 10 min
- 5 10 min
- 10 20 min
- 30 60 min
- 60 600 min

Maximum change in 30 s

- Diesel engines
- Gas engines
- Aeroderivative GT
- Industrial GT
- o GT Combined Cycle
- o Steam turbine plants
- Nuclear plant

- 60 100%
- 20 30 %
- 20 30 %
- 20 30 %
- 10 20 %
 - 5 10 %
 - 5 10 %

Maximum ramp rate

- o Diesel engines
- Gas engines
- Aeroderivative GT
- Industrial GT
- o GT Combined Cycle
- o Steam turbine plants
- o Nuclear plants

40 %/min 20 %/min 20 %/min 20 %/min 5 -10 %/min 1- 5 %/min 1- 5 %/min

CO2 emissions

 Gas fired plants 	g/kWh
 CHP 90 % efficiency 	224
GTCC 55 % efficiency	367
Gas Engine 45 % efficiency	449
Gas Turbine 33 % efficiency	612
 Coal fired plants 	
Supercritical 45 % efficiency	757
 Subcritical 38 % efficiency 	896

Summary

• Power plants have different efficiencies, emissions and operational characteristics

 You should know the alternatives before start to plan of optimal power systems

For details see reference text book "Planning of Optimal Power Systems"

Author: Asko Vuorinen

Publisher: Ekoenergo Oy

Printed: 2007 in Finland

Further details and internet orders see:

www.optimalpowersystems.com