TRIANGLES

EXERCISE 7.1

- **Q.1.** In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (see Fig.). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- **Sol.** In \triangle ABC and \triangle ABD, we have AC = AD[Given]

 $\angle CAB = \angle DAB$

[O AB bisects ∠A]

AB = AB[Common]

 $\triangle ABC \cong \triangle ABD$.

[By SAS congruence] Proved.

Therefore, BC = BD. (CPCT). Ans.

Q.2. ABCD is a quadrilateral in which AD = BCand $\angle DAB = \angle CBA$ (see Fig.). Prove that

(i) $\triangle ABD \cong \triangle BAC$

(ii) BD = AC

(iii) $\angle ABD = \angle BAC$

Sol. In the given figure, ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$.

In $\triangle ABD$ and $\triangle BAC$, we have

$$AD = BC$$

$$\angle DAB = \angle CBA$$

$$AB = AB$$

$$ABD \cong \Delta BAC$$

$$BD = AC$$

$$ABD = \angle BAC$$

$$CPCT$$
[Given]
[Given]
[Given]
[Common]
[CPCT]

Proved

and

- **Q.3.** AD and BC are equal perpendiculars to a line segment AB (see Fig.). Show that CD bisects AB.
- **Sol.** In $\triangle AOD$ and $\triangle BOC$, we have,

$$\angle AOD = \angle BOC$$

[Vertically opposite angles)

 $\angle CBO = \angle DAO$

 $[Each = 90^{\circ}]$ AD = BC[Given]

 $\triangle AOD \cong \triangle BOC$ [By AAS congruence] ٠.

AO = BO[CPCT] Also,

Hence, CD bisects AB **Proved.**

Q.4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig.). Show that $\triangle ABC \cong \triangle CDA$.

$$\angle BAC = \angle DCA$$

[Alternate angles]

$$\angle BCA = \angle DAC$$

[Alternate angles]

$$AC = AC$$

··.

[Common]

$$\Delta ABC \cong \Delta CDA$$
 [By ASA congruence]

Proved.

Q.5. Line l is the bisector of an angle A and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig.). Show that :

(ii)
$$BP = BQ$$
 or B is equidistant from the arms of $\angle A$.

Sol. In
$$\triangle$$
 APB and \triangle AQB, we have

$$\angle PAB = \angle QAB$$

[l is the bisector of $\angle A$]

$$\angle APB = \angle AQB$$

 $[Each = 90^{\circ}]$ [Common]

$$AB = AB$$
 [Co
 $\therefore \triangle APB \cong \triangle AQB$ [By AAS congruence]

Also,
$$BP = BQ$$

i.e., B is equidistant from the arms of $\angle A$. **Proved**

Q.6. In the figure, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.

Sol.
$$\angle BAD = \angle EAC$$
 [Given]

$$\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$$

[Adding \(\subseteq DAC \) to both sides]

$$\Rightarrow$$
 $\angle BAC = \angle EAC$... (i)

Now, in $\triangle ABC$ and $\triangle ADE$, we have

$$AB = AD$$
 [Given]

AC = AE[Given)

$$\Rightarrow$$
 $\angle BAC = \angle DAE [From (i)]$

$$\therefore$$
 $\triangle ABC \cong \triangle ADE$ [By SAS congruence]

$$\Rightarrow$$
 BC = DE.

[CPCT] Proved.

www.tiwariacademy.com Focus on free education

Q.7. AB is a line segment and P is its midpoint. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig.). Show that

- (i) $\triangle DAP \cong \triangle EBP$ (ii) AD = BE
- **Sol.** In $\triangle DAP$ and $\triangle EBP$, we have

$$AP = BP$$
 [Q P is the mid-
point of line segment AB]

$$\angle BAD = \angle ABE$$
 [Given]

$$[Q \angle EPA = \angle DPB \Rightarrow \angle EPA + \angle DPE \\ = \angle DPB + \angle DPE]$$

$$\Delta DPA \cong \Delta EPB$$

$$\Rightarrow$$
 AD = BE

Q.8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig.). Show that:

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) $\angle DBC$ is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

$$(iv) CM = \frac{1}{2}AB$$

Sol. In $\triangle BMB$ and $\triangle DMC$, we have

(i)
$$DM = CM$$

$$BM = AM$$

[O M is the mid-point of AB]

[Vertically opposite angles]

$$\therefore \Delta AMC \cong \Delta BMD$$
 [By SAS]

AC | BD [Q \(\subseteq \text{DBM} \) and \(\subseteq \text{CAM} \) are alternate angles] $\angle DBC + \angle ACB = 180^{\circ}$ [Sum of co-interior angles]

of co-interior angles]
$$[Q \angle ACB = 90^{\circ}] \quad \textbf{Proved.}$$

$$\angle DBC = 90^{\circ}$$
 Proved.

(iii) In $\triangle DBC$ and $\triangle ACB$, we have

$$DB = AC$$

$$BC = BC$$

[Common]

 $[Each = 90^{\circ}]$

$$\therefore$$
 $\triangle DBC \cong \triangle ACB$

[By SAS] **Proved.**

(iv) :. AB = CD

$$\Rightarrow \frac{1}{2}AB = \frac{1}{2}CD$$

[CPCT]

Hence,
$$\frac{1}{2}AB = CM$$

[CM =
$$\frac{1}{2}$$
 CD] **Proved.**