Mathematics

(www.tiwariacademy.com)

Exercise 6.3

Question 1:

In Figure, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ.

$$\angle PQT + \angle PQR = 180^{\circ}$$

[: Linear Pair]

$$\Rightarrow 110^{\circ} + \angle PQR = 180^{\circ}$$

$$\Rightarrow \angle PQR = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\angle SPR + \angle QPR = 180^{\circ}$$

[: Linear Pair]

$$\Rightarrow \angle QPR = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

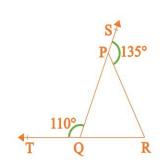
In ΔPQR,

$$\angle QPR + \angle PQR + \angle R = 180^{\circ}$$

$$\Rightarrow$$
 70° + 45° + \angle R = 180°

$$\Rightarrow 115^{\circ} + \angle R = 180^{\circ}$$

$$\Rightarrow$$
 $\angle R = 180^{\circ} - 115^{\circ} = 65^{\circ}$



Question 2:

In Figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of ΔXYZ , find $\angle OZY$ and $\angle YOZ$.

Answer 2:

Given that: $\angle X = 62^{\circ}$ and $\angle XYZ = 54^{\circ}$

In
$$\Delta XYZ$$
, $\angle X + \angle XYZ + \angle XZY = 180^{\circ}$

$$\Rightarrow$$
 62° + 54° + \angle XZY = 180°

$$\Rightarrow 116^{\circ} + \angle XZY = 180^{\circ}$$

$$\Rightarrow$$
 \angle XZY = $180^{\circ} - 116^{\circ} = 64^{\circ}$

YO and ZO are the bisectors of \angle XYZ and \angle XZY respectively. therefore

$$\angle OYZ = \frac{1}{2} \angle XYZ = \frac{1}{2} \times 54^{\circ} = 27^{\circ}$$

$$\angle OZY = \frac{1}{2} \angle XZY = \frac{1}{2} \times 64^{\circ} = 32^{\circ}$$

In
$$\triangle OYZ$$
, $\angle OZY + \angle OYZ + \angle YOZ = 180^{\circ}$

$$\Rightarrow$$
 32° + 27° + \angle YOZ = 180°

$$\Rightarrow$$
 59° + \angle YOZ = 180°

$$\Rightarrow \angle YOZ = 180^{\circ} - 59^{\circ} = 121^{\circ}$$

Question 3:

In Figure, if AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE.

Answer 3:

Given that: AB || DE, therefore

$$\angle CED = \angle BAC$$
 [: Alternate Angles]

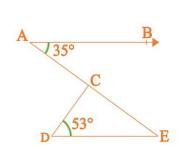
$$\Rightarrow \angle CED = 35^{\circ}$$

In
$$\triangle$$
CDE, \angle CED + \angle CDE + \angle DCE = 180°

$$\Rightarrow$$
 35° + 53° + \angle DCE = 180°

$$\Rightarrow$$
 88° + \angle DCE = 180°

$$\Rightarrow \angle DCE = 180^{\circ} - 88^{\circ} = 92^{\circ}$$



www.tiwariacademy.com

A Step towards free Education

Mathematics

(www.tiwariacademy.com)

(Chapter – 6) (Lines and Angles) (Class - 9)

Ouestion 4:

In Figure, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT.

Answer 4:

Given that: $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$

In $\triangle PTR$, $\angle P + \angle R + \angle PTR = 180^{\circ}$

$$\Rightarrow$$
 95° + 40° + \angle PTR = 180°

$$\Rightarrow \angle PTR = 180^{\circ} - 135^{\circ} = 45^{\circ}$$

$$\angle$$
STQ = \angle PTR

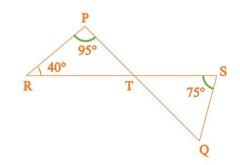
[: Vertically Opposite Angles]

In $\triangle SQT$, $\angle STQ + \angle S + \angle SQT = 180^{\circ}$

$$\Rightarrow$$
 45°+ 75° + \angle SQT = 180°

$$\Rightarrow$$
 120°+ \angle SQT = 180°

$$\Rightarrow \angle SQT = 180^{\circ} - 120^{\circ} = 60^{\circ}$$



Question 5:

In Figure, if PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.

[: Alternate Angles]

Answer 5:

Given that: PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65°

$$\angle PQR = \angle QRT$$

$$\Rightarrow \angle RQS + \angle PQS = 65^{\circ}$$

$$\Rightarrow 28^{\circ} + x = 65^{\circ}$$

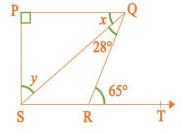
$$\Rightarrow x = 65^{\circ} - 28^{\circ} = 37^{\circ}$$

In
$$\triangle PQS$$
, $\angle P + \angle PQS + \angle PSQ = 180^{\circ}$

$$\Rightarrow$$
 90°+ 37° + y = 180°

$$\Rightarrow 127^{\circ} + y = 180^{\circ}$$

$$\Rightarrow y = 180^{\circ} - 127^{\circ} = 53^{\circ}$$



Question 6:

In Figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.

Answer 6:

 \angle PRS is the exterior angle of \triangle PQR.

Therefore,

$$\angle PRS = \angle QPR + \angle PQR$$

$$\Rightarrow \frac{1}{2} \angle PRS = \frac{1}{2} \angle QPR + \frac{1}{2} \angle PQR$$

$$\Rightarrow \angle TRS = \frac{1}{2} \angle QPR + \angle TQR$$

$$\Rightarrow \angle TRS = \frac{1}{2} \angle QPR + \angle TQR \qquad ... (1) \ [\because \angle TRS = \frac{1}{2} \angle PRS \text{ and } \angle TQR = \frac{1}{2} \angle PQR]$$

 \angle TRS is exterior angle of Δ TQR.

Therefore,

$$\angle TRS = \angle QTR + \angle TQR$$

From the equations (1) and (2), we have

$$\angle QTR + \angle TQR = \frac{1}{2} \angle QPR + \angle TQR$$

$$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR$$

www.tiwariacademy.com

A Step towards free Education