Mathematics (www.tiwariacademy.com) Exercise 6.3 ## **Question 1:** In Figure, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \angle SPR = 135° and \angle PQT = 110°, find \angle PRQ. $$\angle PQT + \angle PQR = 180^{\circ}$$ [: Linear Pair] $$\Rightarrow 110^{\circ} + \angle PQR = 180^{\circ}$$ $$\Rightarrow \angle PQR = 180^{\circ} - 110^{\circ} = 70^{\circ}$$ $$\angle SPR + \angle QPR = 180^{\circ}$$ [: Linear Pair] $$\Rightarrow \angle QPR = 180^{\circ} - 135^{\circ} = 45^{\circ}$$ In ΔPQR, $$\angle QPR + \angle PQR + \angle R = 180^{\circ}$$ $$\Rightarrow$$ 70° + 45° + \angle R = 180° $$\Rightarrow 115^{\circ} + \angle R = 180^{\circ}$$ $$\Rightarrow$$ $\angle R = 180^{\circ} - 115^{\circ} = 65^{\circ}$ #### **Question 2:** In Figure, $\angle X = 62^{\circ}$, $\angle XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\angle XYZ$ and $\angle XZY$ respectively of ΔXYZ , find $\angle OZY$ and $\angle YOZ$. #### Answer 2: Given that: $\angle X = 62^{\circ}$ and $\angle XYZ = 54^{\circ}$ In $$\Delta XYZ$$, $\angle X + \angle XYZ + \angle XZY = 180^{\circ}$ $$\Rightarrow$$ 62° + 54° + \angle XZY = 180° $$\Rightarrow 116^{\circ} + \angle XZY = 180^{\circ}$$ $$\Rightarrow$$ \angle XZY = $180^{\circ} - 116^{\circ} = 64^{\circ}$ YO and ZO are the bisectors of \angle XYZ and \angle XZY respectively. therefore $$\angle OYZ = \frac{1}{2} \angle XYZ = \frac{1}{2} \times 54^{\circ} = 27^{\circ}$$ $$\angle OZY = \frac{1}{2} \angle XZY = \frac{1}{2} \times 64^{\circ} = 32^{\circ}$$ In $$\triangle OYZ$$, $\angle OZY + \angle OYZ + \angle YOZ = 180^{\circ}$ $$\Rightarrow$$ 32° + 27° + \angle YOZ = 180° $$\Rightarrow$$ 59° + \angle YOZ = 180° $$\Rightarrow \angle YOZ = 180^{\circ} - 59^{\circ} = 121^{\circ}$$ ## Question 3: In Figure, if AB || DE, \angle BAC = 35° and \angle CDE = 53°, find \angle DCE. #### Answer 3: Given that: AB || DE, therefore $$\angle CED = \angle BAC$$ [: Alternate Angles] $$\Rightarrow \angle CED = 35^{\circ}$$ In $$\triangle$$ CDE, \angle CED + \angle CDE + \angle DCE = 180° $$\Rightarrow$$ 35° + 53° + \angle DCE = 180° $$\Rightarrow$$ 88° + \angle DCE = 180° $$\Rightarrow \angle DCE = 180^{\circ} - 88^{\circ} = 92^{\circ}$$ www.tiwariacademy.com A Step towards free Education # **Mathematics** (www.tiwariacademy.com) (Chapter – 6) (Lines and Angles) (Class - 9) ## **Ouestion 4:** In Figure, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT. #### Answer 4: Given that: $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$ In $\triangle PTR$, $\angle P + \angle R + \angle PTR = 180^{\circ}$ $$\Rightarrow$$ 95° + 40° + \angle PTR = 180° $$\Rightarrow \angle PTR = 180^{\circ} - 135^{\circ} = 45^{\circ}$$ $$\angle$$ STQ = \angle PTR [: Vertically Opposite Angles] In $\triangle SQT$, $\angle STQ + \angle S + \angle SQT = 180^{\circ}$ $$\Rightarrow$$ 45°+ 75° + \angle SQT = 180° $$\Rightarrow$$ 120°+ \angle SQT = 180° $$\Rightarrow \angle SQT = 180^{\circ} - 120^{\circ} = 60^{\circ}$$ ## Question 5: In Figure, if PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y. [: Alternate Angles] #### Answer 5: Given that: PQ \perp PS, PQ || SR, \angle SQR = 28° and \angle QRT = 65° $$\angle PQR = \angle QRT$$ $$\Rightarrow \angle RQS + \angle PQS = 65^{\circ}$$ $$\Rightarrow 28^{\circ} + x = 65^{\circ}$$ $$\Rightarrow x = 65^{\circ} - 28^{\circ} = 37^{\circ}$$ In $$\triangle PQS$$, $\angle P + \angle PQS + \angle PSQ = 180^{\circ}$ $$\Rightarrow$$ 90°+ 37° + y = 180° $$\Rightarrow 127^{\circ} + y = 180^{\circ}$$ $$\Rightarrow y = 180^{\circ} - 127^{\circ} = 53^{\circ}$$ # Question 6: In Figure, the side QR of \triangle PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove that $\angle QTR = \frac{1}{2} \angle QPR$. # Answer 6: \angle PRS is the exterior angle of \triangle PQR. Therefore, $$\angle PRS = \angle QPR + \angle PQR$$ $$\Rightarrow \frac{1}{2} \angle PRS = \frac{1}{2} \angle QPR + \frac{1}{2} \angle PQR$$ $$\Rightarrow \angle TRS = \frac{1}{2} \angle QPR + \angle TQR$$ $$\Rightarrow \angle TRS = \frac{1}{2} \angle QPR + \angle TQR \qquad ... (1) \ [\because \angle TRS = \frac{1}{2} \angle PRS \text{ and } \angle TQR = \frac{1}{2} \angle PQR]$$ \angle TRS is exterior angle of Δ TQR. Therefore, $$\angle TRS = \angle QTR + \angle TQR$$ From the equations (1) and (2), we have $$\angle QTR + \angle TQR = \frac{1}{2} \angle QPR + \angle TQR$$ $$\Rightarrow \angle QTR = \frac{1}{2} \angle QPR$$ www.tiwariacademy.com A Step towards free Education