Mathematics

(www.tiwariacademy.com)

(Chapter – 4) (Linear Equations in two Variables)
(Class – 9)

Exercise 4.2

Question 1:

Which one of the following options is true, and why?

y = 3x + 5 has

- (i) a unique solution,
- (ii) only two solutions,
- (iii) infinitely many solutions

Answer 1:

(iii) Infinitely many solutions

Because a line has infinite many points and each point is a solution of the linear equation.

Question 2:

Write four solutions for each of the following equations:

(i) 2x + y = 7

(ii) $\pi x + y = 9$

(iii) x = 4y

Answer 2:

(i) $2x + y = 7 \Rightarrow y = 7 - 2x$

Putting x = 0, we have, $y = 7 - 2 \times 0 = 7$, therefore, (0, 7) is a solution of the equation.

Putting x = 1, we have, $y = 7 - 2 \times 1 = 5$, therefore, (1, 5) is a solution of the equation.

Putting x = 2, we have, $y = 7 - 2 \times 2 = 3$, therefore, (2, 3) is a solution of the equation.

Putting x = 3, we have, $y = 7 - 2 \times 3 = 1$, therefore, (3, 1) is a solution of the equation.

Hence, (0,7), (1,5), (2,3) and (3,1) are the four solutions of the equation 2x + y = 7.

(ii) $\pi x + y = 9 \implies y = 9 - \pi x$

Putting x = 0, we have, $y = 9 - \pi \times 0 = 9$, therefore, (0, 9) is a solution of the equation.

Putting x=1, we have, $y=9-\pi\times 1=9-\pi$, therefore, $(1,9-\pi)$ is a solution of the equation.

Putting x=2, we have, $y=9-\pi\times 2=9-2\pi$, therefore, $(2,9-2\pi)$ is a solution of the equation.

Putting x=3, we have, $y=9-\pi\times 3=9-3\pi$, therefore, $(3,9-3\pi)$ is a solution of the equation.

Hence, (0, 9), $(1, 9 - \pi)$, $(2, 9 - 2\pi)$ and $(3, 9 - 3\pi)$ are the four solutions of the equation $\pi x + y = 9$.

(iii) x = 4y

Putting y = 0, we have, $x = 4 \times 0 = 0$, therefore, (0, 0) is a solution of the equation.

Putting y = 1, we have, $x = 4 \times 1 = 4$, therefore, (4, 1) is a solution of the equation.

Putting y = 2, we have, $x = 4 \times 2 = 8$, therefore, (8, 2) is a solution of the equation.

Putting y = 3, we have, $x = 4 \times 3 = 12$, therefore, (12, 3) is a solution of the equation.

Hence, (0,0), (4,1), (8,2) and (12,3) are the four solutions of the equation x=4y.

Question 3:

Check which of the following are solutions of the equation x - 2y = 4 and which are not:

- (i) (0,2)
- (ii) (2,0)
- (iii) (4,0)
- (iv) $(\sqrt{2}, 4\sqrt{2})$
- (v) (1,1)

Answer 3:

(i) (0,2)

Given equation: x - 2y = 4

In x - 2y = 4, putting x = 0 and y = 2, we have, $0 - 2 \times 2 = -4 \neq 4$

Therefore, (0, 2) is not a solution of the equation.

(ii) (2,0)

Given equation: x - 2y = 4

In x - 2y = 4, putting x = 2 and y = 0, we have, $2 - 2 \times 0 = 2 \neq 4$

Hence, (2,0) is not a solution of the equation.

www.tiwariacademy.com

A Step towards free Education

Mathematics

(www.tiwariacademy.com)

(Chapter - 4) (Linear Equations in two Variables) (Class - 9)

(iii) (4,0)

Given equation: x - 2y = 4

In x - 2y = 4, putting x = 4 and y = 0, we have, $4 - 2 \times 0 = 4$

Hence, (4,0) is a solution of the equation.

(iv) $(\sqrt{2}, 4\sqrt{2})$

Given equation: x - 2y = 4

In x - 2y = 4, putting $x = \sqrt{2}$ and $y = 4\sqrt{2}$, we have, $\sqrt{2} - 2 \times 4\sqrt{2} = -7\sqrt{2} \neq 4$

Hence, $(\sqrt{2}, 4\sqrt{2})$ is not a solution of the equation.

(v)(1,1)

Given equation: x - 2y = 4

In x - 2y = 4, putting x = 1 and y = 1, we have, $1 - 2 \times 1 = -1 \neq 4$

Hence, (1, 1) is not a solution of the equation.

Question 4:

Find the value of k, if x = 2, y = 1 is a solution of the equation 2x + 3y = k.

Answer 4:

Given equation: x = 2, y = 1

In 2x + 3y = k, putting x = 2 and y = 1, we have,

 $2 \times 2 + 3 \times 1 = k$

 $\Rightarrow k = 7$

Hence, the value of *k* is 7.

2