(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

#### **EXERCISE 13.7**

**Q.1.** Find the volume of the right circular cone with

(i) radius 6 cm, height 7 cm

(ii) radius 3.5 cm, height 12 cm

**Sol.** (i) Here, r = 6 cm, h = 7 cm

Volume of the cone =  $\frac{1}{3}\pi r^2 h$ 

$$=\frac{1}{3}\times\frac{22}{7}\times6\times6\times7~{\rm cm}^3$$
 = 264 cm<sup>3</sup> Ans.

(ii) Here, r = 3.5 cm, h = 12 cm

Volume of the cone =  $\frac{1}{3}\pi r^2 h$ 

$$=\frac{1}{3}\times\frac{22}{7}\times3.5\times3.5\times12~\text{cm}^3=154~\text{cm}^3\text{ Ans.}$$

Q.2. Find the capacity in litres of a conical vessel with

- (i) radius 7 cm, slant height 25 cm
- (ii) height 12 cm, slant height 13 cm

**Sol.** (i) Here, r = 7 cm, l = 25 cm

$$r = \sqrt{l^2 - r^2} = \sqrt{625 - 49} = \sqrt{576} = 24 \text{ cm}.$$

Volume of the conical vessel =  $\frac{1}{3}\pi r^2 h$ 

= 
$$\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24 \text{ cm}^3 = 1232 \text{ cm}^3$$
  
=  $\frac{1232}{1000}$  litres = **1.232 litres Ans.**

(ii) Here, h = 12 cm, l = 13 cm

$$h = \sqrt{l^2 - h^2} = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25} = 5 \text{ cm}$$

www.tiwariacademy.com

Free web support in education

(Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

Volume of the conical vessel =  $\frac{1}{3}\pi r^2 h$ 

$$= \frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 12 \text{ cm}^3 = \frac{22 \times 5 \times 5 \times 4}{7} \text{ cm}^3$$

= 
$$\frac{22 \times 5 \times 5 \times 4}{7 \times 1000}$$
 litres =  $\frac{11}{35}$  litres Ans.

- **Q.3.** The height of a cone is 15 cm. If its volume is 1570 cm<sup>3</sup>, find the radius of the base. (Use  $\pi = 3.14$ )
- **Sol.** (i) Here, h = 15 cm, volume = 1570 cm<sup>3</sup>

Volume of the cone =  $\frac{1}{2}\pi r^2 h$ 

$$\Rightarrow 1570 = \frac{1}{3} \times 3.14 \times r^2 \times 15$$

$$\Rightarrow$$
  $r^2 = \frac{1570 \times 3}{3.14 \times 15} = 100$ 

$$\Rightarrow$$
  $r = 10$ 

Hence, radius of the base = 10 cm Ans.

- **Q.4.** If the volume of a right circular cone of height 9 cm is  $48 \pi \text{ cm}^3$ , find the diameter of its base.
- **Sol.** Here, h = 9 cm, volume =  $48\pi$  cm<sup>3</sup>

Volume of the cone =  $\frac{1}{3}\pi r^2 h$ 

$$\Rightarrow 48\pi = \frac{1}{3}\pi \times r^2 \times 9$$

$$\Rightarrow r^2 = \frac{48 \pi \times 3}{\pi \times 9} = 16$$

$$\Rightarrow$$
  $r = 4$ 

Hence, base diameter of the cone =  $2 \times 4$  cm = 8 cm Ans.

www.tiwariacademy.com
Free web support in education

www.tiwariacademy.com

(www.tiwariacademy.com)

### (Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

**Q.5.** A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?

**Sol.** Here, 
$$r = \frac{3.5}{2}$$
 m = 1.75 m,  $h = 12$  m

Capacity of the pit = 
$$\frac{1}{3}\pi r^2 h$$
  
=  $\frac{1}{3} \times \frac{22}{7} \times 1.75 \times 1.75 \times 12 \text{ m}^3$ 

=  $38.5 \text{ m}^3$  = 38.5 kl Ans.

- **Q.6.** The volume of a right circular cone is 9856 cm<sup>3</sup>. If the diameter of the base is 28 cm, find
  - (i) height of the cone
  - (ii) slant height of the cone
  - (iii) curved surface area of the cone.

**Sol.** Here, 
$$r = \frac{28}{2}$$
 cm = 14 cm, volume = 9856 cm<sup>3</sup>

(i) Volume of the cone = 
$$\frac{1}{3}\pi r^2 h$$

$$\Rightarrow 9856 = \frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times h$$

$$\Rightarrow h = \frac{9856 \times 3 \times 7}{22 \times 14 \times 14} = 48$$

Hence, height of the cone = 48 cm **Ans.** 

(ii) Slant height 
$$l = \sqrt{h^2 + r^2} = \sqrt{(48)^2 + (14)^2}$$

$$= \sqrt{2304 + 196} = \sqrt{2500} = 50$$

Hence, slant height of the cone = 50 cm Ans.

(iii) Curved surface area of the cone =  $\pi rl$ 

$$=\frac{22}{7} \times 14 \times 50 \text{ cm}^2 = 2200 \text{ cm}^2 \text{ Ans.}$$

www.tiwariacademy.com

Free web support in education

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

- Q.7. A right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.
- Sol. The solid formed is a cone, whose height

$$h = 12$$
 cm, base radius  $r = 5$  cm.

$$\therefore$$
 Volume of the cone =  $\frac{1}{3}\pi r^2 h$ 

$$= \frac{1}{3} \times \pi \times 5 \times 5 \times 12 \text{ cm}^3 = 100 \pi \text{ cm}^3 \text{ Ans.}$$



- **Q.8.** If the triangle ABC in the Question 7 above is revolved about the side 5 cm, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in questions 7 and 8.
- **Sol.** Here radius r of the cone = 12 cm and height h of the cone = 5 cm.

$$\therefore \text{ Volume of the cone } = \frac{1}{3}\pi r^2 h$$
$$= \frac{1}{3}\pi \times 12 \times 12 \times 5 = 240 \text{ } \pi\text{cm}^3 \text{ Ans.}$$

Hence, required ratio = 
$$\frac{100 \,\pi}{240 \,\pi} = \frac{5}{12} = 5$$
: 12 Ans.



**Sol.** Here, radius 
$$r = \frac{10.5}{2}$$
 m = 5.25 m,  $h = 3$  m

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

Volume of the heap = 
$$\frac{1}{3}\pi r^2 h$$
  
=  $\frac{1}{3} \times \frac{22}{7} \times 5.25 \times 5.25 \times 3 \text{ m}^3$  = 86.625 m³ Ans.  
Now,  $l = \sqrt{h^2 + r^2} = \sqrt{3^2 + (5.25)^2}$   
=  $\sqrt{9 + 27.5625} = \sqrt{36.5625} = 6.05 \text{ m (approx)}$ 

Curved surface area of the cone =  $\pi rl$ 

$$=\frac{22}{7} \times 5.25 \times 6.05 \text{ m}^2 = 99.825 \text{ m}^2$$

Hence, 99.825 m<sup>2</sup> of canvas is needed. Ans.