Mathematics

(<u>www.tiwariacademy.com</u>) (Chapter – 13) (Surface Areas and Volumes)

(Class – IX)

EXERCISE 13.6

- **Q.1.** The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold? (1000 cm³ = 1l)
- **Sol.** Here, h = 25 cm, $2\pi r = 132$ cm. $2\pi r = 132$
 - $\Rightarrow \qquad 2 \times \frac{22}{7} \times r = 132$ $\Rightarrow \qquad r = \frac{132 \times 7}{2 \times 22} \text{ cm} = 21 \text{ cm}$

Volume of the cylinder = $\pi r^2 h = \frac{22}{7} \times 21 \times 21 \times 25 \text{ cm}^3$

=
$$34650 \text{ cm}^3$$

= $\frac{34650}{1000}$ litres = **34.65 litres Ans.**

Q.2. The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm. The length of the pipe is 35 cm. Find the mass of the pipe, if 1 cm^3 of wood has a mass of 0.6 g.

Sol. Here, inner radius
$$(r) = \frac{24}{2}$$
 cm = 12 cm
Outer radius (R) = $\frac{28}{2}$ cm = 14 cm, $h = 35$ cm

Volume of the wood used in the pipe = $\pi(\mathbb{R}^2 - r^2) h$

$$= \frac{22}{7} [(14)^4 - (12)^2] \times 35 \text{ cm}^3$$
$$= \frac{22}{7} \times 26 \times 2 \times 35 \text{ cm}^3 = 5720 \text{ cm}^3$$

Mass of 1 cm^3 of wood = 0.6 g

: Mass of 5720 cm³ of wood =
$$0.6 \times 5720$$
 g = 3432 g = 3.432 kg Ans.

Q.3. A soft drink is available in two packs — (i) a tin can with a rectangular base of length 5 cm and width 4 cm, having a height of 15 cm and (ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm. Which container has greater capacity and by how much?

Sol. For tin can with rectangular 6 base.

l = 5 cm, b = 4 cm, h = 15 cm Volume of the tin can = $lbh = 5 \times 4 \times 15$ cm³ = 300 cm³ For plastic cylinder with circular base.

 $r = \frac{1}{2}$ cm = 3.5 cm, h = 10 cm

Volume of the plastic cylinder = $\pi r^2 h$

$$=\frac{22}{7} \times 3.5 \times 3.5 \times 10 \text{ cm}^3 = 385 \text{ cm}^3$$

Difference in the capacities of the two containers

$$= (385 - 300) \text{ cm}^3 = 85 \text{ cm}^3$$

Hence, the plastic cylinder with circular base has greater capacity by 85 cm^3 **Ans.**

www.tiwariacademy.com Free web support in education

Mathematics

(<u>www.tiwariacademy.com</u>) (Chapter – 13) (Surface Areas and Volumes)

(Class – IX)

Q.4. If the lateral surface of a cylinder is 94.2 cm^2 and its height is 5 cm, then find (i) radius of its base (ii) its volume (Use $\pi = 3.14$)

Sol. Here, h = 5 cm, $2\pi rh = 94.2$ cm².

(i) $2\pi rh = 94.2$

 \Rightarrow 2 × 3.14 × r × 5 = 94.2

$$\Rightarrow r = \frac{94.2}{2 \times 3.14 \times 5} = 3$$

Hence, base radius of the cylinder = 3 cm Ans.

(ii) Volume of the cylinder = $\pi r^2 h$

$$= 3.14 \times 3 \times 3 \times 5 \text{ cm}^3 = 141.3 \text{ cm}^3 \text{ Ans.}$$

- **Q.5.** It costs Rs 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of Rs 20 per m^2 , find
 - (i) Inner curved surface area of the vessel,
 - (ii) radius of the base,
 - (iii) capacity of the vessel.

Sol. Here, h = 10 m

(i) Inner curved surface area = $\frac{\text{Total cost}}{\text{Cost of painting per m}^2}$ = $\frac{2200}{20}$ m² = 110 m² Ans.

(ii) We have,
$$2\pi rh = 110$$

 $\Rightarrow 2 \times \frac{22}{7} \times r \times 10 = 110$
 $\Rightarrow r = \frac{110}{2} \frac{7}{22} \frac{7}{10} = 1.75 \text{ m Ans.}$

(iii) Capacity of the vessel = $\pi r^2 h$

$$= \frac{22}{7} \times 1.75 \times 1.75 \times 10 \text{ m}^3 = 96.25 \text{ m}^3$$

= 96.25 kl Ans. [1 m³ = 1 kl]

Q.6. The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of metal sheet would be needed to make it?

Sol. Here, h = 1 m, volume = 15.4 litres

$$= \frac{15.4}{1000} m^3 = 0.0154 m^3$$

Also, volume of the cylinderical vessel = $\pi r^2 h$

$$\Rightarrow 0.0154 = \frac{22}{7} \times r^2 \times 1$$
$$\Rightarrow r^2 = \frac{0.0154 \times 7}{22} = 0.0049$$

www.tiwariacademy.com Free web support in education

Mathematics

(www.tiwariacademy.com) (Chapter – 13) (Surface Areas and Volumes)

 $\Rightarrow r = 0.07 \text{ m}$

 \therefore Total surface area of the cylinder = $2\pi r (h + r)$

=
$$2 \times \frac{22}{7} \times 0.07 (1 + 0.07) \text{ m}^2$$

= $44 \times 0.01 \times 1.07 \text{ m}^2 = 0.4708 \text{ m}^2$

Hence, 0.4708 m^2 of metal sheet would be needed **Ans.**

- Q.7. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the dimeter of the graphite is 1 mm. If the length of the pencil is 14 cm, find the volume of the wood and that of the graphite.
- **Sol.** Here, h = 14 cm.

Radius of the pencil (R) = $\frac{7}{2}$ mm = 0.35 cm. Radius of the graphite $(r) = \frac{1}{2}$ mm = 0.05 cm. Volume of the the graphite = $\pi r^2 h$

 $= \frac{22}{7} \times 0.05 \times 0.05 \times 14 \text{ cm}^3 = 0.11 \text{ cm}^3$ Volume of the the wood = $\pi (R^2 - r^2)h$

$$= \frac{22}{7} \times [(0.35)^2 - (0.05)^2] \times 14 \text{ cm}^3$$
$$= \frac{22}{7} \times 0.4 \times 0.3 \times 14 \text{ cm}^3 = 5.28 \text{ cm}^3$$

Hence, volume of the wood = 5.28 cm^3 and volume of the graphite $= 0.11 \text{ cm}^3 \text{ Ans.}$

- **Q.8.** A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm. If the bowl is filled with soup to a height of 4 cm, how much soup the hospital has to prepare daily to serve 250 patients?
- **Sol.** Here, $r = \frac{7}{2}$ cm = 3.5 cm, h = 4 cm

Capacity of 1 cylindrical bowl = $\pi r^2 h$

$$=\frac{22}{7} \times 3.5 \times 3.5 \times 4 \text{ cm}^3 = 154 \text{ cm}^3$$

Hence, soup consumed by 250 patients per day

 $= 250 \times 154 \text{ cm}^3 = 38500 \text{ cm}^3 \text{ Ans.}$

www.tiwariacademy.com Free web support in education