Mathematics

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

EXERCISE 13.3

- Q.1. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. find its curved surface area.
- **Sol.** Here, $r = \frac{10.5}{2}$ cm = 5.25 cm, l = 10 cm.

Curved surface area of the cone = πrl

=
$$\frac{22}{7}$$
 × 5.25 × 10 cm² = **165 cm² Ans.**

- Q.2. Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m.
- **Sol.** Here, l = 21 m, $r = \frac{24}{2} \text{ m} = 12 \text{ m}$

Total surface area of the cone = $\pi r(l + r)$

=
$$\frac{22}{7} \times 12 (21 + 12) \text{ m}^2$$

= $\frac{22}{7} \times 12 \times 33 \text{ m}^2$ = **1244.57 m² Ans.**

- **Q.3.** Curved surface area of a cone is 308 cm^2 and its slant height is 14 cm. Find (i) radius of the base and (ii) total surface area of the cone.
- **Sol.** Here, l = 14 cm, curved surface area = 308 cm², r = ?
 - (i) Curved surface area of the cone = πrl

$$\Rightarrow 308 = \frac{22}{7} \times r \times 14$$
$$\Rightarrow r = \frac{308}{22 \times 2} = 7$$

Hence, base radius of the cone = 7 cm.

(ii) Total surface area of the cone = $\pi r (l + r)$

$$=\frac{22}{7} \times 7 (14 + 7) \text{ cm}^2 = 22 \times 21 \text{ cm}^2 = 462 \text{ cm}^2 \text{ Ans.}$$

- Q.4. A conical tent is 10 m high and the radius of its base is 24 m. Find
 - (i) slant height of the tent.
 - (ii) cost of the canvas required to make the tent, if the cost of $1 m^2$ canvas is Rs 70.
- Here, h = 10 m, r = 24 m Sol.

(i) We have,
$$l^2 = h^2 + r^2$$

= $(10)^2 + (24)^2$
= $100 + 576 = 676$
 $\Rightarrow l = \sqrt{676} = 26 \text{ m Ans.}$

(ii) Curved surface area of the tent = πrl

$$= \frac{22}{7} \times 24 \times 26 \text{ m}^2$$

Cost of 1 m^2 canvas = Rs 70

$$\therefore \text{ Cost of } \frac{22}{7} \times 24 \times 26 \text{ m}^2 \text{ of canvas} = \text{Rs } 70 \times \frac{22}{7} \times 24 \times 26$$

= Rs 137280 Ans. www.tiwariacademy.com

Free web support in education

Mathematics

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

Q.5. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for

Stitching margins and wastage in cutting is approximately 29 cm (use π = 3.14)

Sol. Here h = 6 m, r = 8 m

We have,
$$l^2 = \sqrt{r^2 + h^2}$$

= $\sqrt{36 + 64} = \sqrt{100} = 10 \text{ m}$

Curved surface area of the tent = πrl = $3.14 \times 6 \times 10 \text{ m}^2$

∴ required length of tarpaulin =
$$\frac{3.14 \times 6 \times 10}{3}$$
 m + 20 cm

$$= 62.8 \text{ m} + 0.2 \text{ m} = 63 \text{ m} \text{ Ans.}$$

- **Q.6.** The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white washing its curved surface at the rate of Rs 210 per 100 m^2 .
- **Sol.** Here, l = 25 m, $r = \frac{14}{2} \text{m} = 7 \text{ m}$

Curved surface area of the tomb = πrl

$$=\frac{22}{7} \times 7 \times 25 \text{ m}^2 = 550 \text{ m}^2$$

Cost of white washing $100 \text{ m}^2 = \text{Rs } 210$

$$\therefore$$
 Cost of white washing 550 m² = Rs $\frac{210}{100} \times 550$ = Rs 1155 Ans.

- **Q.7.** A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.
- **Sol.** Here, r = 7 cm, h = 24 cm

We have,
$$l = \sqrt{h^2 + r^2} = \sqrt{(24)^2 + 7^2}$$

= $\sqrt{576 + 49} = \sqrt{625} = 25$ cm

Total curved surface area of 1 cap = πrl

$$=\frac{22}{7} \times 7 \times 25 \text{ cm}^2 = 550 \text{ cm}^2$$

Area of sheet required to make 10 such caps = 10×550 cm² = **5500** cm² Ans.

Q.8. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is Rs 12 per m^2 , what will be the cost of painting all these cones? (Use $\pi = 3.14$ and take $\sqrt{1.04} = 1.02$)

Sol. Here,
$$r = \frac{40}{2}$$
 cm = 20 cm = 0.20 m, $h = 1$ m

$$l = \sqrt{h^2 + r^2} = \sqrt{1^2 + (0.2)^2} = \sqrt{1.04} = 1.02 \text{ m}$$

www.tiwariacademy.com

Free web support in education

Mathematics

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

Curved surface area of 1 cone = πrl Curved surface area of 50 cones = $50 \times 3.14 \times 0.2 \times 1.02 \text{ m}^2$ = 32.028 m^2 Cost of painting an area of 1 m² = Rs 12 \therefore Cost of painting an area of 32.028 m² = Rs 12 × 32.028 = Rs 384.34 (approx) Ans.

<u>www.tiwariacademy.com</u> Free web support in education

