(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

(Class – IX)

EXERCISE 13.2

- **Q.1.** The curved surface area of a right circular cylinder of height 14 cm is 88 cm^2 . Find the diameter of the base of the cylinder.
- **Sol.** Here, h = 14 cm, curved, surface area = 88 cm², r = ? Curved surface area of the cylinder = $2\pi rh$

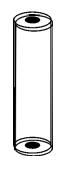
$$\Rightarrow 88 = 2 \times \frac{22}{7} \times r \times 14$$

$$\Rightarrow 88 = 44 \times 2 \times r$$

$$\Rightarrow r = \frac{88}{44 \times 2} = 1$$

Hence, base diameter of the cylinder = 1×2 cm = 2 cm **Ans.**

- **Q.2.** It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square metres of the sheet are required for the same?.
- **Sol.** Here, h = 1 m, $r = \frac{140}{2}$ cm = 70 cm = 0.7 m Total surface area of the cylinder = $2\pi r$ (h + r) = $2 \times \frac{22}{7} \times 0.7$ (1 + 0.7) m² = $44 \times 0.1 \times 1.7$ m² = 7.48 m²


Hence, 7.48 m² of sheet is required Ans.

- **Q.3.** A metal pipe is 77 cm long. The inner diameter of a cross section is 4 cm, the outer diameter being 4.4 cm (see figure). Find its.
 - (i) inner curved surface area,
 - (ii) outer curved surface area,
 - (iii) total surface area.
- Sol. Here, h = 77 cm,

Outer radius (R) =
$$\frac{4.4}{2}$$
 cm = 2.2 cm,

Inner radius
$$(r) = \frac{4}{2}$$
 cm = 2 cm

(i) Inner curved surface area of the pipe $= 2\pi rh$ $= 2 \times \frac{22}{7} \times 2 \times 77 \text{ cm}^2$ $= 2 \times 22 \times 22 \text{ cm}^2 = 968 \text{ cm}^2 \text{ Ans.}$

www.tiwariacademy.com
Free web support in education

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

(Class - IX)

(ii) Outer curved surface area of the pipe = $2\pi Rh$

=
$$2 \times \frac{22}{7} \times 2.2 \times 77 \text{ cm}^2 = 44 \times 24.2 \text{ cm}^2$$

= 1064.80 cm² Ans.

(iii) Total surface area of the pipe = inner curved surface area + outer curved surface area + areas of the two base rings.

$$= 2\pi rh + 2\pi Rh + 2\pi (R^2 - r^2)$$

= 968 cm² + 1064.80 cm² + 2 ×
$$\frac{22}{7}$$
 [(2.2)² - 2²] cm²

= $2032.80 \text{ cm}^2 + 5.28 \text{ cm}^2 = 2038.08 \text{ cm}^2 \text{ Ans.}$

- **Q.4.** The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m^2 .
- **Sol.** Radius of the roller $(r) = \frac{84}{2}$ cm = 42 cm

Length of the roller (h) = 120 cm

Curved surface area of the roller = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 42 \times 120 \text{ cm}^2 = 44 \times 720 \text{ cm}^2 = 31680 \text{ cm}^2$$

 \therefore area covered by the roller in 1 revolution = 31680 cm²

 \therefore area covered by the roller in 500 revolutions = 31680 \times 500 cm² = 15840000 cm²

Hence, area of the playground = $\frac{15840000}{100 \times 100}$ m² = **1584 m² Ans.**

Q.5. A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of Rs 12.50 per m².

Sol. Here,
$$r = \frac{50}{2}$$
 cm = 25 cm = 0.25 m, $h = 3.5$ m

Curved surface area of the pillar = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 0.25 \times 3.5 \text{ m}^2 = 5.5 \text{ m}^2$$

Cost of painting $1 \text{ m}^2 = \text{Rs } 12.50$

:. Total cost of painting the curved surface of the pillar

= Rs
$$12.50 \times 5.5$$
 = Rs 68.75 Ans.

- **Q.6.** Curved surface area of a right circular cylinder is 4.4 m^2 . If the radius of the base of the cylinder is 0.7 m, find its height.
- **Sol.** Curved surface area of the cylinder = 4.4 m^2 , r = 0.7 m, h = ? Curved surface area of the cylinder = $2\pi rh$.

$$\Rightarrow 4.4 = 2 \times \frac{22}{7} \times 0.7 \times h$$

$$\Rightarrow h = \frac{4.4}{4.4} = 1$$

Hence, height of the cylinder is 1 m Ans.

www.tiwariacademy.com
Free web support in education

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

- Q.7. The inner diameter of a circular well is 3.5 m. It is 10 m deep. Find
 - (i) its inner curved surface area,
 - (ii) the cost of plastering this curved surface at the rate of Rs 40 per m^2 .
 - **Sol.** Here, $r = \frac{3.5 \text{ m}}{2}$, h = 10 m
 - (i) Inner curved surface area of the well

=
$$2\pi rh$$
 = $2 \times \frac{22}{7} \times \frac{3.5}{2} \times 10\text{m}^2$
= $22 \times 5 \text{ m}^2$ = 110 m² Ans.

- (ii) Cost of plastering $1 \text{ m}^2 = \text{Rs } 40$
 - :. Cost of plastering the curved surface area of the well

= Rs
$$110 \times 40$$
 = Rs 4400 Ans.

- **Q.8.** In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system.
- **Sol.** Here, $r = \frac{5}{2}$ cm = 2.5 cm = 0.025 m, h = 28 m.

Total radiating surface in the system = total surface area of the cylinder

=
$$2\pi \ r(h + r)$$

= $2 \times \frac{22}{7} \times 0.025 \ (28 + 0.025) \ m^2$
= $\frac{44 \times 0.025 \times 28.025}{7} \ m^2$ = **4.4 m² (approx) Ans.**

- **Q.9.** *Find*
 - (i) the lateral or curved surface area of a closed cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high.
 - (ii) how much steel was actually used, if $\frac{1}{12}$ of the steel actually used was wasted in making the tank.
- **Sol.** Here, $r = \frac{4.2}{2}$ m = 2.1 m, h = 4.5 m
 - (i) Curved surface area of the storage tank = $2\pi rh$

=
$$2 \times \frac{22}{7} \times 2.1 \times 4.5 \text{ m}^2$$
 = **59.4 m² Ans.**

(ii) Total surface area of the tank = $2\pi r (h + r)$

=
$$2 \times \frac{22}{7} \times 2.1 (4.5 + 2.1) \text{ m}^2$$

= $44 \times 0.3 \times 6.6 \text{ m}^2 = 87.12 \text{ m}^2$

Let the actual area of steel used be $x \text{ m}^2$

Area of steel wasted =
$$\frac{1}{12}$$
 of x m² = $\frac{x}{12}$ m². ... (i

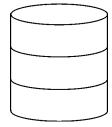
 \therefore area of the steel used in the tank = $\left(x - \frac{x}{12}\right)$ m² = $\frac{11}{12}$ x m²

$$\Rightarrow 87.12 = \frac{11}{12} x$$

$$\Rightarrow x = \frac{87.12 \times 12}{11} = 95.04 \text{ m}^2$$

Hence, 95.04 m² of steel was actually used **Ans.**

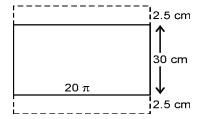
www.tiwariacademy.com


Free web support in education

(www.tiwariacademy.com)

(Chapter – 13) (Surface Areas and Volumes)

Q.10. In the figure, you see the frame of a lampshade. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm. A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade.


Sol. Here,
$$r = \frac{20}{2}$$
 cm = 10 cm

$$Height = 30 cm$$

Circumference of the base of the frame = $2\pi r$

$$= 2\pi \times 10 \text{ cm} = 20\pi \text{ cm}$$

Height of the frame = 30 cm

Height of the cloth needed for covering the frame (including the margin) = (30 + 2.5 + 2.5) cm = 35 cm

Also, breadth of the cloth = circumference of the base of the frame.

 \therefore Area of the cloth required for covering the lampshade = length \times breadth

=
$$35 \times 20\pi$$
 cm² = $35 \times 20 \times \frac{22}{7}$ cm² = **2200** cm² Ans.

- Q.11. The students of a Vidyalaya were asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard. Each penholder was to be of radius 3 cm and height 10.5 cm. The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?
 - **Sol.** Here, r = 3 cm, h = 10.5 cm

The penholders have only one base i.e., these are open at one end.

Total surface area of 1 penholder

$$= 2\pi rh + \pi r^{2} = \pi r (2h + r)$$

$$= \frac{22}{7} \times 3 (2 \times 10.5 + 3) \text{ cm}^{2}$$

$$= \frac{22}{7} \times 3 \times 24 \text{ cm}^{2}$$

Total surface area of 35 penholders = $\frac{22}{7} \times 3 \times 24 \times 35$ cm² = 7920 cm² Hence, 7920 cm² of cardboard is needed **Ans.**