MK

11

CONSTRUCTIONS

EXERCISE 11.2

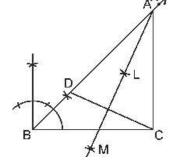
Q.1. Construct a triangle ABC in which BC = 7 cm, $\angle B = 75^{\circ}$ and AB + AC = 13 cm.

Steps of Construction

- (i) Draw a line segment BC = 7 cm.
- (ii) At B, draw $\angle CBX = 75^{\circ}$.
- (iii) Cut a line segment BD = 13 cm from BX.
- (iv) Join DC
- (v) Draw the perpendicular bisector LM of CD, which intersects BD at A.
- (vi) Join AC. Then ABC is the required triangle.

$$AC = AD$$

$$AB = BD - AD$$


$$= BD - AC$$

$$\Rightarrow$$
 AB + AC = BD

Q.2. Construct a triangle ABC, in which BC = 8 cm, $\angle B = 45^{\circ}$ and AB - AC = 3.5 cm.

Steps of Construction

- (i) Draw a line segment BC = 3.5 cm
- (ii) At B, draw $\angle CBX = 45^{\circ}$.
- (iii) From BX, cut off BD = 3.5 cm.
- (iv) Join DC.
- (v) Draw the perpendicular bisector LM of DC, which intersects BX at A. (vi) Join AC. Then ABC is the required triangle.

Justification: In $\triangle ADC$,

$$AD = AC$$

$$BD = AB - AD$$

$$\Rightarrow$$
 BD = AB - AC

Q.3. Construct a triangle PQR in which QR = 6 cm, $\angle Q = 60^{\circ}$ and PR - PQ = 2 cm.

Steps of Construction

- (i) Draw a line segment QR = 6 cm
- (ii) At Q, draw $\angle RQX = 60^{\circ}$.

- (iii) Produce XQ to Y.
- (iv) Cut off QS = 2 cm from QY.
- (v) Join SR.
- (vi) Draw the perpendicular bisector LM of SR, which intersect QX at P.
- (vii) Join PR. Then PQR is the required triangle.

Justification : In $\triangle PSR$, we have

$$QS = PS - PQ$$

= $PR - PQ$

Q.4. Construct a $\triangle XYZ$ in which $\angle X = 30^{\circ}$, $\angle Z = 90^{\circ}$ and XY + YZ + ZX = 11 cm.

Steps of Construction

- (i) Draw a line segment AB = 11 cm
- (ii) At A, draw ∠BAP = 30° and at B, draw ∠ABR = 90°
- (iii) Draw the bisector of ∠BAP and ∠ABR, which intersect each other at Y.
- (iv) Join AY and BY.
- (v) Draw the perpendicular bisectors LM and ST of AY and BY respectively. LM and ST intersect AB at X and Z respectively.
- ors BY ect
- (vi) Join XY and YZ. Then XYZ is the required triangle.

Justification : In $\triangle AXY$, we have

Similarly,
$$ZB = YZ$$
 ... (ii)

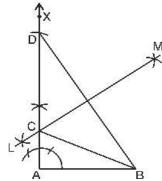
$$\therefore XY + YZ + ZX = AX + ZB + ZX$$
 [From (i) and (ii)] = AB

From (i),
$$AX = AY$$

$$\Rightarrow$$
 $\angle XAY = \angle XYA$ [Angles opposite to equal sides are equal] ... (iii)

In
$$\triangle AXY$$
, $\angle YXZ = \angle XAY + \angle XYA$ [Exterior angle is equal to sum of interior opposite angles]

$$\Rightarrow$$
 $\angle YXZ = 2\angle XAY$ [From (iii)]


$$\Rightarrow$$
 $\angle YXZ = \angle XAP$ [: AY bisects $\angle XAP$]

Similarly, $\angle YZX = \angle ZBR$.

Q.5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.

Steps of Construction

- (i) Draw a line segment AB = 12 cm.
- (ii) At A, draw $\angle BAX = 90^{\circ}$.
- (iii) From AX, cut off AD = 18 cm.
- (iv) Join DB.
- (v) Draw the perpendicular bisector LM of BD, which intersects AD at C.
- (vi) Join BC. Then ΔABC is the required triangle.

