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EXERCISE 10.6 (Optional)
Q.1. Prove that the line of centres of two intersecting circles subtends equal

angles at the two points of intersection.
Sol. Given : Two intersecting circles, in which OO′ is the

line of centres and A and B are two points of
intersection.
To prove : ∠OAO′ = ∠OBO′
Construction : Join AO, BO, AO′ and BO′.
Proof : In ∆AOO′ and ∆BOO′, we have

AO = BO [Radii of the same circle]
AO′ = BO′ [Radii of the same circle]
OO′ = OO′ [Common]

∴ ∆AOO′ ≅ ∆BOO′ [SSS axiom]
⇒ ∠OAO′ = ∠OBO′ [CPCT]
Hence, the line of centres of two intersecting circles subtends equal angles
at the two points of intersection. Proved.

Q.2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle
are parallel to each other and are on opposite sides of its centre. If the
distance between AB and CD is 6 cm, find the radius of the circle.

Sol. Let O be the centre of the circle and let its radius be r cm.
Draw OM ⊥ AB and OL ⊥ CD.

Then, AM = 
1  
2 AB = 5

2
 cm

and, CL = 
1
2 CD = 

11
2

 cm

Since, AB || CD, it follows that the points O, L, M are

111000 CIRCLES

collinear and therefore, LM = 6 cm.
Let OL = x cm. Then OM = (6 – x) cm
Join OA and OC. Then OA = OC = r cm.
Now, from right-angled ∆OMA and ∆OLC, we have
OA2 = OM2 + AM2 and OC2 = OL2 + CL2 [By Pythagoras Theorem]

⇒ r2 = (6 – x)2 + 5
2

2⎛
⎝⎜

⎞
⎠⎟

   ..(i) and r2 = x2 + 11
2

2⎛
⎝⎜

⎞
⎠⎟

  ... (ii)
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⇒ (6 – x)2 + 5
2

2⎛
⎝⎜

⎞
⎠⎟

  = x2 + 11
2

2⎛
⎝⎜

⎞
⎠⎟

  [From (i) and (ii)]

⇒ 36 + x2 – 12x + 25
4

 = x2 + 121
4

⇒ – 12x = 121
4

 – 25
4

 – 36

⇒ – 12x = 
96
4  – 36

⇒ – 12x = 24 – 36
⇒ – 12x = – 12
⇒      x = 1
Substituting x =1 in (i), we get

   r2 = (6 – x)2 + 5
2

2⎛
⎝⎜

⎞
⎠⎟

⇒ r2 = (6 – 1)2 + 5
2

2⎛
⎝⎜

⎞
⎠⎟

⇒ r2 = (5)2 + 5
2

2⎛
⎝⎜

⎞
⎠⎟

 = 25 + 25
4

⇒ r2 = 
125

4

⇒ r = 5 5
2

Hence, radius r = 5 5
2

 cm.  Ans.

Q.3. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the
smaller chord is at distance 4 cm from the centre, what is the distance of
the other chord from the centre?

Sol. Let PQ and RS be two parallel chords of a circle with centre O.
We have, PQ = 8 cm and RS = 6 cm.
Draw perpendicular bisector OL of RS which meets PQ in M. Since,
PQ || RS, therefore, OM is also perpendicular bisector of PQ.

Also, OL = 4 cm and RL = 
1
2 RS ⇒ RL = 3 cm

and PM = 
1
2 PQ ⇒ PM = 4 cm

In ∆ORL, we have
   OR2 = RL2 + OL2   [Pythagoras theorem]
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⇒ OR2 = 32 + 42 = 9 + 16

⇒ OR2 = 25 ⇒ OR = 25
⇒ OR = 5 cm
∴ OR = OP      [Radii of the circle]
⇒ OP = 5 cm
Now, in ∆OPM
OM2 = OP2 – PM2   [Pythagoras theorem]
⇒ OM2 = 52 – 42 = 25 – 16 = 9

OM = 9  = 3 cm
Hence, the distance of the other chord from the centre is 3 cm.  Ans.

Q.4. Let the vertex of an angle ABC be located outside a circle and let the sides
of the angle intersect equal chords AD and CE with the circle. Prove that
∠ ABC is equal to half the difference of the angles subtended by the chords
AC and DE at the centre.

Sol. Given : Two equal chords AD and
CE of a circle with centre O. When
meet at B when produced.

To Prove : ∠ABC = 1
2

(∠AOC – ∠DOE)

Proof : Let ∠AOC = x, ∠DOE = y, ∠AOD = z
∠EOC = z [Equal chords subtends equal angles at the centre]
∴ x + y + 2z = 36° [Angle at a point] .. (i)
OA = OD   ⇒ ∠OAD = ∠ODA
∴ In DOAD, we have
∠OAD + ∠ODA + z = 180°
⇒ 2∠OAD = 180° – z [  ∠OAD = ∠OBA]

⇒ ∠OAD = 90° – z
2

... (ii)

Similarly ∠OCE = 90° – z
2

... (iii)

⇒ ∠ODB = ∠OAD + ∠ODA [Exterior angle property]

⇒ ∠OEB = 90° – z
2

 + z [From (ii)]

⇒ ∠ODB = 90° + z
2

... (iv)

Also, ∠OEB = ∠OCE + ∠COE [Exterior angle property]

⇒ ∠OEB = 90° – z
2

  + z [From (iii)]

⇒ ∠OEB = 90° + z
2

... (v)
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Also, ∠OED = ∠ODE = 90° – 
y
2

... (vi)

O from (iv), (v) and (vi), we have

∠BDE = ∠BED = 90° + 
z
2  – 90

2
° −⎛

⎝⎜
⎞
⎠⎟

y

⇒  ∠BDE = ∠BED = 
y z+

2
⇒  ∠BDE = ∠BED = y + z ... (vii)
∴  ∠BDE = 180° – (y + z)
⇒  ∠ABC = 180° – (y + z) ... (viii)

Now, 
y z y z y− = ° − − −

2
360 2

2  = 180° – (y + z) ... (ix)

From (viii) and (ix), we have

∠ABC = 
x y−

2  Proved.

Q.5. Prove that the circle drawn with any side of a rhombus as diameter, passes
through the point of intersection of its diagonals.

Sol. Given : A rhombus ABCD whose diagonals intersect each other at O.
To prove : A circle with AB as diameter passes through O.
Proof : ∠AOB = 90°
[Diagonals of a rhombus bisect each other at 90°]
⇒ ∆AOB is a right triangle right angled at O.
⇒ AB is the hypotenuse of A B right ∆AOB.
⇒ If we draw a circle with AB as diameter, then it
will pass through O. because angle is a semicircle
is 90° and ∠AOB = 90° Proved.

Q.6. ABCD is a parallelogram. The circle through A, B and C intersect CD
(produced if necessary) at E. Prove that AE =  AD.

Sol. Given : ABCD is a parallelogram.
To Prove : AE = AD.
Construction : Draw a circle which
passes through ABC and intersect
CD (or CD produced) at E.
Proof : For fig (i)

∠AED + ∠ABC = 180°
[Linear pair] ... (ii)

But ∠ACD = ∠ADC = ∠ABC + ∠ADE
⇒ ∠ABC + ∠ADE = 180° [From (ii)]   ... (iii)
From (i) and (iii)

∠AED + ∠ABC = ∠ABC + ∠ADE
⇒ ∠AED = ∠ADE
⇒ ∠AD = ∠AE    [Sides opposite to equal angles are equal]
Similarly we can prove for Fig (ii) Proved.
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Q.7. AC and BD are chords of a circle which bisect each other. Prove that (i)
AC and BD are diameters, (ii) ABCD is rectangle.

Sol. Given : A circle with chords AB and CD
which bisect each other at O.
To Prove : (i) AC and BD are diameters

(ii) ABCD is a rectangle.
Proof : In ∆OAB and ∆OCD, we have

OA = OC [Given]
OB = OD [Given]

∠AOB = ∠COD [Vertically opposite angles]
⇒     ∆AOB ≅ ∠COD [SAS congruence]
⇒     ∠ABO = ∠CDO and ∠BAO = ∠BCO   [CPCT]
⇒  AB || DC ... (i)
Similarly, we can prove BC || AD ... (ii)
Hence, ABCD is a parallelogram.
But ABCD is a cyclic parallelogram.
∴ ABCD is a rectangle. [Proved in Q. 12 of Ex. 10.5]
⇒      ∠ABC = 90° and ∠BCD = 90°
⇒      AC is a diameter and BD is a diameter

[Angle in a semicircle is 90°] Proved.

Q.8. Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle
at D, E and F respectively. Prove that the angles of the triangle DEF are

90° – 
1
2

A, 90° – 
1
2

B and 90° – 
1
2

C.

Sol. Given :  ∆ABC and its circumcircle. AD, BE,
CF are bisectors of ∠A, ∠B, ∠C respectively.
Construction : Join DE, EF and FD.
Proof :  We know that angles in the same
segment are equal.

∴ ∠5 = ∠C
2

 and ∠6 = 
∠B
2   ..(i)

∠1 = ∠A
2

 and ∠2 = ∠C
2

  ..(ii)

∠4 = 
∠A
2

 and ∠3 = 
∠B
2  ..(iii)

From (i), we have

∠5 + ∠6 = ∠C
2

 + 
∠B
2

⇒ ∠D = ∠C
2

 + 
∠B
2

...(iv)

[∵∠5 + ∠6 = ∠D]
But ∠A + ∠B + ∠C = 180°
⇒ ∠B + ∠C = 180° – ∠A
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⇒
∠B
2  + ∠C

2
= 90° – ∠A

2
∴ (iv) becomes,

∠D = 90° – ∠A
2

.

Similarly, from (ii) and (iii), we can prove that

∠E = 90° – 
∠B
2  and ∠F = 90° – 

∠C
2

  Proved.

Q.9. Two congruent circles intersect each other at points A and B. Through A
any line segment PAQ is drawn so that P, Q lie on the two circles. Prove
that BP = BQ.

Sol. Given : Two congruent circles which intersect at A and B. PAB is a line
through A.
To Prove : BP = BQ.
Construction : Join AB.
Proof : AB is a common chord of both the circles.
But the circles are congruent —
⇒arc ADB = arc AEB
⇒ ∠APB = ∠AQB Angles subtended
⇒ BP = BQ    [Sides opposite to equal angles are equal] Proved.

Q.10. In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector
of BC intersect, prove that they intersect on the circumcircle of the triangle
ABC.

Sol. Let angle bisector of ∠A intersect circumcircle of ∆ABC at D.
Join DC and DB.
∠BCD = ∠BAD
                [Angles in the same segment]

⇒ ∠BCD = ∠BAD 
1
2  ∠A

                   [AD is bisector of ∠A] ...(i)

Similarly ∠DBC = ∠DAC 
1
2  ∠A ... (ii)

From (i) and (ii) ∠DBC = ∠BCD
⇒  BD = DC [sides opposite to equal angles are equal]
⇒  D lies on the perpendicular bisector of BC.
Hence, angle bisector of ∠A and perpendicular bisector of BC intersect on
the circumcircle of ∆ABC Proved.
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