CIRCLES

EXERCISE 10.6 (Optional)

- **Q.1.** Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- **Sol.** Given : Two intersecting circles, in which OO' is the line of centres and A and B are two points of intersection.

To prove : $\angle OAO' = \angle OBO'$

Construction : Join AO, BO, AO' and BO'.

Proof : In $\triangle AOO'$ and $\triangle BOO'$, we have

AO = BO[Radii of the same circle]

AO' = BO'[Radii of the same circle]

00' = 00'[Common]

 $\Delta AOO' \cong \Delta BOO'$ [SSS axiom] ...

 $\angle OAO' = \angle OBO'$ [CPCT] \rightarrow

Hence, the line of centres of two intersecting circles subtends equal angles at the two points of intersection. Proved.

Q.2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.

Sol. Let O be the centre of the circle and let its radius be r cm.

Draw OM \perp AB and OL \perp CD.

Then, AM =
$$-\frac{1}{2}$$
AB = $\frac{5}{2}$ cm

 $CL = \frac{1}{2}CD = \frac{11}{2}cm$ and,

Since, AB || CD, it follows that the points O, L, M are

collinear and therefore, LM = 6 cm. Let OL = x cm. Then OM = (6 - x) cm Join OA and OC. Then OA = OC = r cm. Now, from right-angled $\triangle OMA$ and $\triangle OLC$, we have $OA^2 = OM^2 + AM^2$ and $OC^2 = OL^2 + CL^2$ [By Pythagoras Theorem] $\Rightarrow r^2 = (6 - x)^2 + \left(\frac{5}{2}\right)^2$...(i) and $r^2 = x^2 + \left(\frac{11}{2}\right)^2$...(ii)

> www.tiwariacademy.com free web support in education

www.tiwariacademy.in

$$\Rightarrow (6 - x)^{2} + \left(\frac{5}{2}\right)^{2} = x^{2} + \left(\frac{11}{2}\right)^{2} \text{ [From (i) and (ii)]}$$

$$\Rightarrow 36 + x^{2} - 12x + \frac{25}{4} = x^{2} + \frac{121}{4}$$

$$\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$$

$$\Rightarrow -12x = \frac{96}{4} - 36$$

$$\Rightarrow -12x = 24 - 36$$

$$\Rightarrow -12x = -12$$

$$\Rightarrow x = 1$$
Substituting $x = 1$ in (i), we get
$$r^{2} = (6 - x)^{2} + \left(\frac{5}{2}\right)^{2}$$

$$\Rightarrow r^{2} = (6 - 1)^{2} + \left(\frac{5}{2}\right)^{2}$$

$$\Rightarrow r^{2} = (5)^{2} + \left(\frac{5}{2}\right)^{2} = 25 + \frac{25}{4}$$

$$\Rightarrow r^{2} = \frac{125}{4}$$

$$\Rightarrow r = \frac{5\sqrt{5}}{2}$$
Hence, radius $r = \frac{5\sqrt{5}}{2}$ cm. Ans.

- **Q.3.** The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
- Sol. Let PQ and RS be two parallel chords of a circle with centre O.
 We have, PQ = 8 cm and RS = 6 cm.
 Draw perpendicular bisector OL of RS which meets PQ in M. Since, PQ || RS, therefore, OM is also perpendicular bisector of PQ.

Also,
$$OL = 4$$
 cm and $RL = \frac{1}{2}RS \Rightarrow RL = 3$ cm
and $PM = \frac{1}{2}PQ \Rightarrow PM = 4$ cm
In $\triangle ORL$, we have
 $OR^2 = RL^2 + OL^2$ [Pythagoras theorem]

www.tiwariacademy.in

 $\Rightarrow OR^{2} = 3^{2} + 4^{2} = 9 + 16$ $\Rightarrow OR^{2} = 25 \Rightarrow OR = \sqrt{25}$ $\Rightarrow OR = 5 \text{ cm}$ $\therefore OR = OP \qquad [Radii of the circle]$ $\Rightarrow OP = 5 \text{ cm}$ Now, in $\triangle OPM$ $OM^{2} = OP^{2} - PM^{2} \qquad [Pythagoras theorem]$ $\Rightarrow OM^{2} = 5^{2} - 4^{2} = 25 - 16 = 9$ $OM = \sqrt{9} = 3 \text{ cm}$

Hence, the distance of the other chord from the centre is 3 cm. Ans.

- **Q.4.** Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that \angle ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
- **Sol.** Given : Two equal chords AD and CE of a circle with centre O. When meet at B when produced.

To Prove : $\angle ABC = \frac{1}{2}(\angle AOC - \angle DOE)$

Proof: Let $\angle AOC = x$, $\angle DOE = y$, $\angle AOD = z$ $\angle EOC = z$ [Equal chords subtends equal angles at the centre] $\therefore x + y + 2z = 36^{\circ}$ [Angle at a point] .. (i) $OA = OD \implies \angle OAD = \angle ODA$ \therefore In DOAD, we have $\angle OAD + \angle ODA + z = 180^{\circ}$ $[:: \angle OAD = \angle OBA]$ $\Rightarrow 2 \angle \text{OAD} = 180^\circ - z$ $\Rightarrow \angle \text{OAD} = 90^\circ - \frac{z}{2}$... (ii) Similarly $\angle OCE = 90^\circ - \frac{z}{2}$... (iii) $\Rightarrow \angle ODB = \angle OAD + \angle ODA$ [Exterior angle property] $\Rightarrow \angle OEB = 90^{\circ} - \frac{z}{2} + z$ [From (ii)] $\Rightarrow \angle \text{ODB} = 90^\circ + \frac{z}{2}$... (iv) Also, $\angle OEB = \angle OCE + \angle COE$ [Exterior angle property] $\Rightarrow \angle OEB = 90^\circ - \frac{z}{2} + z$ [From (iii)] $\Rightarrow \angle OEB = 90^{\circ} + \frac{z}{2}$... (v)

> <u>www.tiwariacademy.com</u> free web support in education

www.tiwariacademy.in

Also, $\angle OED = \angle ODE = 90^\circ - \frac{y}{2}$	(vi)
O from (iv), (v) and (vi), we have	
$\angle BDE = \angle BED = 90^\circ + \frac{z}{2} - \left(90^\circ - \frac{y}{2}\right)$	
$\Rightarrow \angle BDE = \angle BED = \frac{y+z}{2}$	
$\Rightarrow \angle BDE = \angle BED = y + z$	(vii)
$\therefore \angle BDE = 180^\circ - (y + z)$	
$\Rightarrow \angle ABC = 180^{\circ} - (y + z)$	(viii)
Now, $\frac{y-z}{2} = \frac{360^\circ - y - 2z - y}{2} = 180^\circ - (y + z)$	(ix)
From (viii) and (ix), we have	

 $\angle ABC = \frac{x-y}{2}$ **Proved.**

- **Q.5.** Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- Sol. Given : A rhombus ABCD whose diagonals intersect each other at O. **To prove :** A circle with AB as diameter passes through O. **Proof** : $\angle AOB = 90^{\circ}$ [Diagonals of a rhombus bisect each other at 90°] $\Rightarrow \Delta AOB$ is a right triangle right angled at O. \Rightarrow AB is the hypotenuse of A B right \triangle AOB. \Rightarrow If we draw a circle with AB as diameter, then it will pass through O. because angle is a semicircle

- Q.6. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- **Sol.** Given : ABCD is a parallelogram.

is 90° and $\angle AOB = 90^{\circ}$ **Proved.**

To Prove : AE = AD.

Proof: For fig (i)

Construction : Draw a circle which passes through ABC and intersect CD (or CD produced) at E.

(i) $\angle AED + \angle ABC = 180^{\circ}$ [Linear pair] ... (ii) But $\angle ACD = \angle ADC = \angle ABC + \angle ADE$ $\angle ABC + \angle ADE = 180^{\circ}$ [From (ii)] ... (iii) \Rightarrow From (i) and (iii)

 $\angle AED + \angle ABC = \angle ABC + \angle ADE$

 $\angle AED = \angle ADE$ \Rightarrow

∠AD = ∠AE [Sides opposite to equal angles are equal] \Rightarrow Similarly we can prove for Fig (ii) **Proved.**

> www.tiwariacademy.com free web support in education

But $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \qquad \angle B + \angle C = 180^{\circ} - \angle A$

> <u>www.tiwariacademy.com</u> free web support in education

 $[\because \angle 5 + \angle 6 = \angle D]$

iwaci

$$\Rightarrow \qquad \frac{\angle B}{2} + \frac{\angle C}{2} = 90^{\circ} - \frac{\angle A}{2}$$

$$\angle D = 90^\circ - \frac{\angle A}{2}$$

Similarly, from (ii) and (iii), we can prove that

$$\angle E = 90^\circ - \frac{\angle B}{2}$$
 and $\angle F = 90^\circ - \frac{\angle C}{2}$ **Proved.**

- **Q.9.** Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.
- **Sol.** Given : Two congruent circles which intersect at A and B. PAB is a line through A.

To Prove : BP = BQ.

Construction : Join AB.

Proof : AB is a common chord of both the circles. But the circles are congruent —

 \Rightarrow arc ADB = arc AEB

$$\Rightarrow \angle APB = \angle AQB$$
 Angles subtended

$$\Rightarrow$$
 BP = BQ [Sides opposite to equal angles are equal] **Proved.**

- **Q.10.** In any triangle ABC, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.
 - **Sol.** Let angle bisector of $\angle A$ intersect circumcircle of $\triangle ABC$ at D. Join DC and DB.

 $\angle BCD = \angle BAD$

[Angles in the same segment]

$$\Rightarrow \angle BCD = \angle BAD \frac{1}{2} \angle A$$

[AD is bisector of $\angle A$] ...(i)

Similarly $\angle DBC = \angle DAC \frac{1}{2} \angle A$... (ii)

From (i) and (ii) $\angle DBC = \angle BCD$

 \Rightarrow BD = DC [sides opposite to equal angles are equal]

 \Rightarrow D lies on the perpendicular bisector of BC.

Hence, angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle ABC$ **Proved.**

