(www.tiwariacademy.com)

(Chapter – 8) (Comparing Quantities) (Class – VIII)

Exercise 8.3

Question 1:

Calculate the amount and compound interest on:

- (a) ₹ 10,800 for 3 years at $12\frac{1}{2}$ % per annum compounded annually.
- (b) ₹ 18,000 for $2\frac{1}{2}$ years at 10% per annum compounded annually.
- (c) \neq 62,500 for $1\frac{1}{2}$ years at 8% per annum compounded annually.
- (d) ₹ 8,000 for 1 years at 9% per annum compounded half yearly. (You could the year by year calculation using S.I. formula to verify).
- (e) ₹ 10,000 for 1 years at 8% per annum compounded half yearly.

Answer 1:

(a) Here, Principal (P) = \neq 10800, Time (n) = 3 years,

Rate of interest (R) =
$$12\frac{1}{2}\% = \frac{25}{2}\%$$

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 10800\left(1 + \frac{25}{2 \times 100}\right)^3 = 10800\left(1 + \frac{1}{2 \times 4}\right)^3$$

= $10800\left(1 + \frac{1}{8}\right)^3 = 10800\left(\frac{9}{8}\right)^3 = 10800 \times \frac{9}{8} \times \frac{9}{8} \times \frac{9}{8} = ₹ 15,377.34$

Compound Interest (C.I.) = A - P = ₹ 10800 - ₹15377.34 = ₹4,577.34

(b) Here,

Principal (P) = \neq 18,000, Time (n) = $2\frac{1}{2}$ years, Rate of interest (R) = 10% p.a.

Amount (A) = P
$$\left(1 + \frac{R}{100}\right)^n = 18000 \left(1 + \frac{10}{100}\right)^2 = 18000 \left(1 + \frac{1}{10}\right)^2$$

= $18000 \left(\frac{11}{10}\right)^2 = 18000 \times \frac{11}{10} \times \frac{11}{10} = ₹ 21,780$

Interest for $\frac{1}{2}$ years on ₹ 21,780 at rate of $10\% = \frac{1}{2} \times \frac{21780 \times 10 \times 1}{100} = ₹ 1,089$

Total amount for $2\frac{1}{2}$ years = ₹ 21,780 + ₹ 1089 = ₹ 22,869

Compound Interest (C.I.) = A - P = ₹ 22869 - ₹ 18000 = ₹ 4,869

(c) Here, Principal (P) = ₹ 62500,

Time $(n) = 1\frac{1}{2} = \frac{3}{2}$ years = 3 half-years (compounded half yearly)

Rate of interest (R) = 8% = 4% (compounded half yearly)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 62500\left(1 + \frac{4}{100}\right)^2 = 62500\left(1 + \frac{1}{25}\right)^3$$

www.tiwariacademy.com

A Free web support in Education

1

(www.tiwariacademy.com)

(Chapter - 8) (Comparing Quantities) (Class - VIII)

=
$$62500 \left(\frac{26}{25}\right)^3$$
 = $62500 \times \frac{26}{25} \times \frac{26}{25} \times \frac{26}{25}$ = ₹ 70,304

Compound Interest (C.I.) = A - P = ₹ 70304 - ₹ 62500 = ₹ 7,804

(d) Here,

Principal (P) = ₹ 8000,

Time (n) = 1 years = 2 half-years(compounded half yearly)

Rate of interest (R) = $9\% = \frac{9}{2}\%$ (compounded half yearly)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 8000\left(1 + \frac{9}{2 \times 100}\right)^2 = 8000\left(1 + \frac{9}{200}\right)^2$$

= $8000\left(\frac{209}{200}\right)^2 = 8000 \times \frac{209}{200} \times \frac{209}{200} = ₹8,736.20$

Compound Interest (C.I.) = A - P = ₹ 8736.20 - ₹ 8000 = ₹ 736.20

(e) Here, Principal (P) = ₹ 10,000,

Time (n) = 1 years = 2 half-years (compounded half yearly)

Rate of interest (R) = 8% = 4% (compounded half yearly)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 10000\left(1 + \frac{4}{100}\right)^2 = 10000\left(1 + \frac{1}{25}\right)^2$$

= $10000\left(\frac{26}{25}\right)^2 = 10000 \times \frac{26}{25} \times \frac{26}{25} = ₹ 10,816$

Compound Interest (C.I.) = A − P = ₹ 10,816 − ₹ 10,000 = ₹ 816

Question 2:

Kamala borrowed $\ge 26,400$ from a Bank to buy a scooter at a rate of 15% p.a. compounded yearly. What amount will she pay at the end of 2 years and 4 months to clear the loan? (**Hint**: Find A for 2 years with interest is compounded yearly and then find SI on the 2^{nd} year amount for $\frac{4}{12}$ years).

Answer 2:

Here, Principal (P) = ₹ 26,400,

Time (n) = 2 years 4 months, Rate of interest (R) = 15% p.a.

Amount for 2 years (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 26400\left(1 + \frac{15}{100}\right)^2 = 26400\left(1 + \frac{3}{20}\right)^2$$

= $26400\left(\frac{23}{20}\right)^2 = 26400 \times \frac{23}{20} \times \frac{23}{20} = 34,914$

Interest for 4 months = $\frac{4}{12} = \frac{1}{3}$ years at the rate of 15% = $\frac{1}{3} \times \frac{34914 \times 15 \times 1}{100}$

∴ Total amount = ₹ 34,914 + ₹ 1,745.70 = ₹ 36,659.70

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 8) (Comparing Quantities) (Class - VIII)

Question 3:

Fabina borrows $\stackrel{?}{=}$ 12,500 per annum for 3 years at simple interest and Radha borrows the same amount for the same time period at 10% per annum, compounded annually. Who pays more interest and by how much?

Answer 3:

Here, Principal (P) = ₹ 12,500, Time (T) = 3 years, Rate of interest (R) = 12% p.a.

Simple Interest for Fabina =
$$\frac{P \times R \times T}{100}$$
 = $\frac{12500 \times 12 \times 3}{100}$ = ₹ 4,500

Amount for Radha, P = 712,500, R = 10% and n = 3 years

Amount (A)
$$= P\left(1 + \frac{R}{100}\right)^n = 12500\left(1 + \frac{10}{100}\right)^3 = 12500\left(1 + \frac{1}{10}\right)^3$$
$$= 12500\left(\frac{11}{10}\right)^3 = 12500 \times \frac{11}{10} \times \frac{11}{10} \times \frac{11}{10} = ₹ 16,637.50$$

∴ C.I. for Radha = A - P = ₹ 16,637.50 - ₹ 12,500 = ₹ 4,137.50

Here, Fabina pays more interest = ₹ 4,500 - ₹ 4,137.50 = ₹ 362.50

Ouestion 4:

I borrows ₹ 12,000 from Jamshed at 6% per annum simple interest for 2 years. Had I borrowed this sum at 6% per annum compound interest, what extra amount would I have to pay?

Answer 4:

Here, Principal (P) = ₹12,000, Time (T) = 2 years, Rate of interest (R) = 6% p.a.

Simple Interest =
$$\frac{P \times R \times T}{100}$$
 = $\frac{12000 \times 6 \times 2}{100}$ = ₹ 1,440

Had he borrowed this sum at 6% p.a., then

Compound Interest =
$$P\left(1 + \frac{R}{100}\right)^n - P = 12000\left(1 + \frac{6}{100}\right)^2 - 12000$$

= $12000\left(1 + \frac{3}{50}\right)^2 - 12000 = 12000\left(\frac{53}{50}\right)^2 - 12000$
= $12000 \times \frac{53}{50} \times \frac{53}{50} - 12000 = ₹ 13,483.20 - ₹ 12,000$
= ₹ 1,483.20

Difference in both interests = ₹ 1,483.20 - ₹ 1,440.00 = ₹ 43.20

Question 5:

Vasudevan invested ₹ 60,000 at an interest rate of 12% per annum compounded half yearly. What amount would he get:

- (i) after 6 months?
- (ii) after 1 year?

Answer 5:

Here, Principal (P) = \neq 60,000,

Time (n) = 6 months = 1 half-year (compounded half yearly)

Rate of interest (R) = 12% = 6% (compounded half yearly)

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 8) (Comparing Quantities)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 60000\left(1 + \frac{6}{100}\right)^1 = 60000\left(1 + \frac{3}{50}\right)^1$$

= $60000\left(\frac{53}{50}\right)^1 = 60000 \times \frac{53}{50} = ₹63,600$

After 6 months Vasudevan would get amount ₹ 63,600.

(ii) Here, Principal (P) = ₹ 60,000,
 Time (n) = 1 year = 2 half-years (compounded half yearly)
 Rate of interest (R) = 12% = 6% (compounded half yearly)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 60000\left(1 + \frac{6}{100}\right)^2 = 60000\left(1 + \frac{3}{50}\right)^2$$

= $60000\left(\frac{53}{50}\right)^2 = 60000 \times \frac{53}{50} \times \frac{53}{50} = ₹67,416$

After 1 year Vasudevan would get amount ₹ 67,416.

Question 6:

Arif took a loan of \ge 80,000 from a bank. If the rate of interest is 10% per annum, find the difference in amounts he would be paying after $1\frac{1}{2}$ years if the interest is:

- (i) compounded annually.
- (ii) compounded half yearly.

Answer 6:

(i) Here,

Principal (P) = $\frac{1}{2}$ 80,000, Time (n) = $1\frac{1}{2}$ years, Rate of interest (R) = 10%

Amount for 1 year (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 80000\left(1 + \frac{10}{100}\right)^1 = 80000\left(1 + \frac{1}{10}\right)^1$$

= $80000\left(\frac{11}{10}\right)^1 = 80000$

Interest for
$$\frac{1}{2}$$
 year = $\frac{88000 \times 10 \times 1}{100 \times 2}$ = ₹ 4,400

Total amount = ₹ 88,000 + ₹ 4,400 = ₹ 92,400

(ii) Here, Principal (P) = \neq 80,000, Time $(n) = 1\frac{1}{2}$ year = 3 half-years (compounded half yearly)

Rate of interest (R) = 10% = 5% (compounded half yearly)

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 80000\left(1 + \frac{5}{100}\right)^3 = 80000\left(1 + \frac{1}{20}\right)^3$$

= $80000\left(\frac{21}{20}\right)^3 = 80000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20} = \$92,610$

Difference in amounts = ₹ 92,610 - ₹ 92,400 = ₹ 210

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter – 8) (Comparing Quantities) (Class – VIII)

Question 7:

Maria invested ₹ 8,000 in a business. She would be paid interest at 5% per annum compounded annually. Find:

- (i) The amount credited against her name at the end of the second year.
- (ii) The interest for the third year.

Answer 7:

(i) Here,

Principal (P) = ₹ 8000, Rate of Interest (R) = 5%, Time (n) = 2 years

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 8000\left(1 + \frac{5}{100}\right)^2 = 8000\left(1 + \frac{1}{20}\right)^2$$

= $8000\left(\frac{21}{20}\right)^2 = 8000 \times \frac{21}{20} \times \frac{21}{20} = 8,820$

(ii) Here, Principal (P) = $\frac{1}{2}$ 8000, Rate of Interest (R) = 5%, Time (n) = 3 years

Amount (A) =
$$P\left(1 + \frac{R}{100}\right)^n = 8000\left(1 + \frac{5}{100}\right)^3 = 8000\left(1 + \frac{1}{20}\right)^3$$

= $8000\left(\frac{21}{20}\right)^3 = 8000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20} = ₹ 9,261$

Interest for 3^{rd} year = A - P = ₹ 9,261 - ₹ 8,820 = ₹ 441

Question 8:

Find the amount and the compound interest on $\ge 10,000$ for $1\frac{1}{2}$ years at 10% per annum, compounded half yearly. Would this interest be more than the interest he would get if it was compounded annually?

Answer 8:

Here, Principal (P) = ₹ 10000,

Rate of Interest (R) = 10% = 5% (compounded half yearly)

Time $(n) = 1\frac{1}{2}$ years = 3 half-years (compounded half yearly)

Amount (A)
$$= P\left(1 + \frac{R}{100}\right)^n = 10000\left(1 + \frac{5}{100}\right)^3 = 10000\left(1 + \frac{1}{20}\right)^3$$
$$= 10000\left(\frac{21}{20}\right)^3 = 10000 \times \frac{21}{20} \times \frac{21}{20} \times \frac{21}{20} = ₹ 11,576.25$$

Compound Interest (C.I.) = A − P = ₹ 11,576.25 − ₹ 10,000 = ₹ 1,576.25 If it is compounded annually, then

Here, Principal (P) = \neq 10000, Rate of Interest (R) = 10%, Time $(n) = 1\frac{1}{2}$ years

Amount (A) for 1 year =
$$P\left(1 + \frac{R}{100}\right)^n = 10000\left(1 + \frac{10}{100}\right)^1 = 10000\left(1 + \frac{1}{10}\right)^1$$

= $10000\left(\frac{11}{10}\right)^1 = 10000 \times \frac{11}{10} = ₹ 11,000$

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 8) (Comparing Quantities) (Class - VIII)

Interest for
$$\frac{1}{2}$$
 year = $\frac{11000 \times 1 \times 10}{2 \times 100}$ = ₹ 550

Yes, interest ₹ 1,576.25 is more than ₹ 1,550.

Question 9:

Find the amount which Ram will get on $\leq 4,096$, if he gave it for 18 months at $12\frac{1}{2}\%$ per annum, interest being compounded half yearly.

Answer 9:

Rate of Interest (R) =
$$12\frac{1}{2} = \frac{25}{2}\% = \frac{25}{4}\%$$
 (compounded half yearly)

Time
$$(n) = 18$$
 months = $1\frac{1}{2}$ years = 3 half-years (compounded half yearly)

Amount (A)
$$= P\left(1 + \frac{R}{100}\right)^n = 4096\left(1 + \frac{25}{4 \times 100}\right)^3 = 4096\left(1 + \frac{1}{4 \times 4}\right)^3$$
$$= 4096\left(\frac{17}{16}\right)^3 = 4096 \times \frac{17}{16} \times \frac{17}{16} \times \frac{17}{16} = 4096 \times \frac{17}{16} \times \frac{$$

Question 10:

The population of a place increased to 54,000 in 2003 at a rate of 5% per annum.

- Find the population in 2001.
- (ii) What would be its population in 2005?

Answer 10:

(i) Here, $A_{2003} = 54,000$, R = 5%, n = 2 years Population would be less in 2001 than 2003 in two years. Here population is increasing.

(ii) According to question, population is increasing. Therefore population in 2005,

A₂₀₀₅ =
$$P\left(1 + \frac{R}{100}\right)^n = 54000\left(1 + \frac{5}{100}\right)^2 = 54000\left(1 + \frac{1}{20}\right)^2$$

= $54000\left(\frac{21}{20}\right)^2 = 54000 \times \frac{21}{20} \times \frac{21}{20} = 59,535$

Hence population in 2005 would be 59,535.

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter – 8) (Comparing Quantities) (Class – VIII)

Question 11:

In a laboratory, the count of bacteria in a certain experiment was increasing at the rate of 2.5% per hour. Find the bacteria at the end of 2 hours if the count was initially 5,06,000.

Answer 11:

Here, Principal (P) = 5,06,000, Rate of Interest (R) = 2.5%, Time (n) = 2 hours After 2 hours, number of bacteria,

Amount (A)
$$= P \left(1 + \frac{R}{100} \right)^{n}$$

$$= 506000 \left(1 + \frac{2.5}{100} \right)^{2}$$

$$= 506000 \left(1 + \frac{25}{1000} \right)^{2}$$

$$= 506000 \left(1 + \frac{1}{40} \right)^{2}$$

$$= 506000 \left(\frac{41}{40} \right)^{2}$$

$$= 506000 \times \frac{41}{40} \times \frac{41}{40} = 5,31,616.25$$

Hence, number of bacteria after two hours are 531616 (approx.).

Question 12:

A scooter was bought at ₹ 42,000. Its value depreciated at the rate of 8% per annum. Find its value after one year.

Answer 12:

Here, Principal (P) = \neq 42,000, Rate of Interest (R) = 8%, Time (n) = 1 years

Amount (A)
$$= P \left(1 - \frac{R}{100} \right)^{n}$$

$$= 42000 \left(1 - \frac{8}{100} \right)^{1}$$

$$= 42000 \left(1 + \frac{2}{25} \right)^{1}$$

$$= 42000 \left(\frac{27}{25} \right)^{1}$$

$$= 42000 \times \frac{27}{25} = 38,640$$

Hence, the value of scooter after one year is ₹ 38,640.