(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

Exercise 6.4

Question 1:

Find the square roots of each of the following numbers by Division method:

- 2304
- (iii) 3481
- (v) 3249 5776 (vii)
- 576 (ix)
- (xi) 3136

- 4489
- (iv) 529
- (vi) 1369
- (viii) 7921 1024 (x)
- (xii) 900

Answer 1:

(i) 2304

Hence, the square root of 2304 is 48.

48
$\overline{23}$ $\overline{04}$
- 16
704
- 704
0

(ii) 4489

Hence, the square root of 4489 is 67.

	67
6	$\overline{44}$ $\overline{89}$
	- 36
127	889
	- 889
	0

(iii) 3481

Hence, the square root of 3481 is 59.

	59	
5	34 81	
	- 25	
109	981	
	- 981	
	0	

529 (iv)

Hence, the square root of 529 is 23.

	23
2	5 29
	- 4
43	129
	-129
	0

(v) 3249

Hence, the square root of 3249 is 57.

	57
5	32 49
	- 25
107	749
	- 749
	0

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

(vi) 1369

Hence, the square root of 1369 is 37.

	37
3	13 69
	- 9
67	469
	- 469
	0

(vii) 5776

Hence, the square root of 5776 is 76.

	76
7	57 76 - 49
146	876
	- 876
	0

(viii) 7921

Hence, the square root of 7921 is 89.

	89
8	79 21
	- 64
169	1521
	- 1521
	0

(ix) 576

Hence, the square root of 576 is 24.

	24
2	5 76
	- 4
44	176
	-176
	0

(x) 1024

Hence, the square root of 1024 is 32.

	32
3	10 24 - 9
62	124 - 124
	0

(xi) 3136

Hence, the square root of 3136 is 56.

	56
5	31 36
	- 25
106	636
	- 636
	0

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

900 (xii)

Hence, the square root of 900 is 30.

	30
3	9 00
	- 9
00	000
	- 000
	0

Question 2:

Find the number of digits in the square root of each of the following numbers (without any calculation):

64 (i)

(ii) 144

(iii) 4489 (iv) 27225

(v) 390625

Answer 2:

- Here, 64 contains two digits which is even. (i) Therefore, number of digits in square root = $\frac{n}{2} = \frac{2}{3} = 1$
- (ii) Here, 144 contains three digits which is odd. Therefore, number of digits in square root = $\frac{n+1}{2} = \frac{3+1}{2} = \frac{4}{2} = 2$
- (iv) Here, 4489 contains four digits which is even. Therefore, number of digits in square root = $\frac{n}{2} = \frac{4}{2} = 2$
- (v) Here, 390625 contains six digits which is even. Therefore, number of digits in square root = $\frac{n}{2} = \frac{6}{2} = 3$

Question 3:

Find the square root of the following decimal numbers:

(i) 2.56 (ii) 7.29

(iii) 51.84 (iv) 42.25

31.36 (v)

Answer 3:

2.56 (i)

Hence, the square root of 2.56 is 1.6.

	1.6
1	$\frac{1}{2} \cdot \frac{1}{56}$
	- 1
26	156
	- 156
	0

(ii) 7.29

Hence, the square root of 7.29 is 2.7.

	2.7
2	7. <u>29</u> - 4
47	329 - 329
	0

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

(iii) 51.84

Hence, the square root of 51.84 is 7.2.

	7.2
7	51 . 84
	- 49
142	284
	- 284
	0

(iv) 42.25

Hence, the square root of 42.25 is 6.5.

	6.5
6	$\overline{42}$. $\overline{25}$
	- 36
125	625
	- 625
	0

(v) 31.36

Hence, the square root of 31.36 is 5.6.

	5.6
5	31 . 36
	- 25
106	636
	- 636
	0

Question 4:

Find the least number which must be subtracted from each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained:

(i) 402

(ii) 1989

(iii) 3250

ACAD (iv) y 825

(v) 4000

Answer 4:

(i) 402

We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 2.

Therefore 2 must be subtracted from 402 to get a perfect square.

	20
2	$\overline{4}$ $\overline{02}$
	- 4
40	02
	- 00
	2

Hence, the square root of 400 is 20.

	20
2	4 00 - 4
00	00
	- 00
	0

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

(ii) 1989

We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 53. Therefore 53 must be subtracted from 1989 to get a perfect square.

Hence, the square root of 1936 is 44.

	44
4	19 36
	- 16
84	336
	- 336
	0

(iii) 3250

We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 1. Therefore 1 must be subtracted from 3250 to get a perfect square.

Hence, the square root of 3249 is 57.

	57
5	$\frac{-}{32}$ $\frac{-}{49}$
	- 25
107	749
	- 749
	0

(iv) 825

We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 41. Therefore 41 must be subtracted from 825 to get a perfect square.

Hence, the square root of 784 is 28.

	28
2	8 25
	- 4
48	425
	- 384
	41

44

- 16

19 89

389

- 336 53

57

- 25

32 50

750

749 1

5

107

4

84

	28
2	7 84
48	384
	- 384
	0

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

(v) 4000

We know that, if we subtract the remainder from the number, we get a perfect square.

Here, we get remainder 31. Therefore 31 must be subtracted from 4000 to get a perfect square.

∴ 4000 - 31 = 3969

6 40 00 - 36 123 400 - 369

63

Hence, the square root of 3969 is 63.

	63
6	39 69
	- 36
123	369
	- 369
	0

Question 5:

Find the least number which must be added to each of the following numbers so as to get a perfect square. Also, find the square root of the perfect square so obtained:

(i) 525

(ii) 1750

(iii) 252

(iv) 1825

(v) 6412

Answer 5:

(i) 525
Since remainder is 41. Therefore 22² < 525
Next perfect square number 23² = 529
Hence, number to be added = 529 - 525 = 4

525 + 4 = 529

Hence, the square root of 529 is 23. A D E M Y

	22
2	5 25
	- 4
42	125
	- 84
	41

(ii) 1750
Since remainder is 69. Therefore 41² < 1750
Next perfect square number 42² = 1764
Hence, number to be added = 1764 − 1750 = 14
∴ 1750 + 14 = 1764

Hence, the square root of 1764 is 42.

	41
4	$\overline{17}$ $\overline{50}$
	- 16
81	150
	- 81
	69

(iii) 252 Since remainder is 27. Therefore $15^2 < 252$ Next perfect square number $16^2 = 256$ Hence, number to be added = 256 - 252 = 4

∴ 252 + 4 = 256

Hence, the square root of 256 is 16.

	15
1	$\overline{2}$ $\overline{52}$
	- 1
25	152
	-125
	27

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

(iv) 1825 Since remainder is 61. Therefore $42^2 < 1825$ Next perfect square number $43^2 = 1849$ Hence, number to be added = 1849 - 1825 = 24

∴ 1825 + 24 = 1849

Hence, the square root of 1849 is 43.

	42
4	$\overline{18}$ $\overline{25}$
	- 16
82	225
	-164
	61

(v) 6412Since remainder is 12. Therefore $80^2 < 6412$ Next perfect square number $81^2 = 6561$ Hence, number to be added = 6561 - 6412 = 149

∴ 6412 + 149 = 6561

Hence, the square root of 6561 is 81.

	80
8	64 12
	- 64
160	0012
	- 0000
	12

Question 6:

Find the length of the side of a square whose area is $441\ m^2$?

Answer 6:

Let the length of side of a square be x meter.

Area of square = $(side)^2 = x^2$

According to question, $x^2 = 441$

$$\Rightarrow x = \sqrt{441} = \sqrt{3 \times 3 \times 7 \times 7} = 3 \times 7$$

$$\Rightarrow$$
 $x = 21 \text{ m}$

Hence, the length of side of a square is 21 m.

Question 7:

In a right triangle ABC, \angle B = 90°.

- (i) If AB = 6 cm, BC = 8 cm, find AC.
- (ii) If AC = 13 cm, BC = 5 cm, find AB.

Answer 7:

(i) Using Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow$$
 AC² = (6)² + (8)²

$$\Rightarrow$$
 AC² = 36 + 84 = 100

 \Rightarrow AC = 10 cm

(ii) Using Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\Rightarrow$$
 (13)² = AB² + (5)²

$$\Rightarrow$$
 169 = AB² + 25

$$\Rightarrow$$
 AB² = 169 - 25

$$\Rightarrow$$
 AB² = 144

 \Rightarrow AB = 12 cm

www.tiwariacademy.com

(www.tiwariacademy.com)

(Chapter - 6) (Squares and Square Roots) (Class - VIII)

Question 8:

A gardener has 1000 plants. He wants to plant these in such a way that the number of rows and number of columns remain same. Find the minimum number of plants he needs more for this.

Answer 8:

Here, plants = 1000

Since remainder is 39. Therefore $31^2 < 1000$ Next perfect square number $32^2 = 1024$ Hence, number to be added = 1024 - 1000 = 241000 + 24 = 1024

Hence, the gardener required 24 more plants.

	31
3	$\overline{10}$ $\overline{00}$
	- 9
61	100
	- 61
	39

Question 9:

There are 500 children in a school. For a P.T. drill they have to stand in such a manner that the number of rows is equal to number of columns. How many children would be left out in this arrangement?

Answer 9:

Here, Number of children = 500 By getting the square root of this number, we get,

In each row, the number of children is 22. And left out children are 16.

	22
2	5 00
42	100
	- 84 16
	16

www.tiwariacademy.com
A Free web support in Education