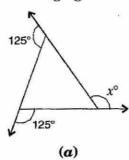
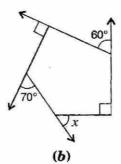
Mathematics


(www.tiwariacademy.com)


(Chapter - 3) (Understanding Quadrilaterals) (Class - VIII)

Exercise 3.2

Question 1:

Find *x* in the following figures:

[Linear pair]

[Linear pair]

Answer 1:

 \Rightarrow

(a) Here, $125^{\circ} + m = 180^{\circ}$

$$\Rightarrow$$
 $m = 180^{\circ} - 125^{\circ} = 55^{\circ}$
and $125^{\circ} + n = 180^{\circ}$

$$n = 180^{\circ} - 125^{\circ} = 55^{\circ}$$

Exterior angle x° = Sum of opposite interior angles

$$x^{\circ} = 55^{\circ} + 55^{\circ} = 110^{\circ}$$

 $=(n-2)\times180^{\circ}$ (b) Sum of angles of a pentagon

=
$$(5-2) \times 180^{\circ}$$

= $3 \times 180^{\circ} = 540^{\circ}$

By linear pairs of angles,

$$\angle 1 + 90^{\circ} = 180^{\circ}$$

$$\angle 2 + 60^{\circ} = 180^{\circ}$$
(ii)

$$\angle 3 + 90^{\circ} = 180^{\circ}$$

$$\angle 4 + 70^{\circ} = 180^{\circ}$$

$$\angle 5 + x = 180^{\circ}$$

....(i)

Adding eq. (i), (ii), (iii), (iv) and (v),

$$x + (\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5) + 310^{\circ} = 900$$

$$\Rightarrow x + 540^{\circ} + 310^{\circ} = 900^{\circ} \Rightarrow x + 850^{\circ} = 900^{\circ} \Rightarrow x = 900^{\circ} - 850^{\circ} = 50^{\circ}$$

$$900^{\circ} \Rightarrow x = 900^{\circ}$$

Find the measure of each exterior angle of a regular polygon of:

(a) 9 sides

(b) 15 sides

Answer 2:

(i) Sum of angles of a regular polygon = $(n-2) \times 180^{\circ}$

$$= (9-2) \times 180^{\circ} = 7 \times 180^{\circ} = 1260^{\circ}$$

Each interior angle =
$$\frac{\text{Sum of interior angles}}{\text{Number of sides}} = \frac{1260^{\circ}}{9} = 140^{\circ}$$

Each exterior angle = $180^{\circ} - 140^{\circ} = 40^{\circ}$

(ii) Sum of exterior angles of a regular polygon = 360°

Each interior angle =
$$\frac{\text{Sum of interior angles}}{\text{Number of sides}} = \frac{360^{\circ}}{15} = 24^{\circ}$$

www.tiwariacademy.com

A Free web support in Education

Mathematics

(www.tiwariacademy.com)

(Chapter - 3) (Understanding Quadrilaterals) (Class - VIII)

Question 3:

How many sides does a regular polygon have, if the measure of an exterior angle is 24° ?

Answer 3:

Let number of sides be n.

Sum of exterior angles of a regular polygon = 360°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{24^{\circ}} = 15$$

Hence, the regular polygon has 15 sides.

Question 4:

How many sides does a regular polygon have if each of its interior angles is 165°?

Let number of sides be n.

Exterior angle = $180^{\circ} - 165^{\circ} = 15^{\circ}$

Sum of exterior angles of a regular polygon = 360°

Number of sides =
$$\frac{\text{Sum of exterior angles}}{\text{Each interior angle}} = \frac{360^{\circ}}{15^{\circ}} = 24$$

Hence, the regular polygon has 24 sides.

Question 5:

- (a) Is it possible to have a regular polygon with of each exterior angle as 22°?
- (b) Can it be an interior angle of a regular polygon? Why?

Answer 5:

- (a) No. (Since 22 is not a divisor of 360°)
- (b) No, (Because each exterior angle is $180^{\circ} 22^{\circ} = 158^{\circ}$, which is not a divisor of 360°)

Question 6:

- (a) What is the minimum interior angle possible for a regular polygon? Why?
- (b) What is the maximum exterior angle possible for a regular polygon?

Answer 6:

- (a) The equilateral triangle being a regular polygon of 3 sides has the least measure of an interior angle of 60° .
 - : Sum of all the angles of a triangle = 180°

$$\therefore x+x+x=180^{\circ}$$

$$\Rightarrow$$
 3x=180°

$$\Rightarrow x = 60^{\circ}$$

(b) By (a), we can observe that the greatest exterior angle is $180^{\circ} - 60^{\circ} = 120^{\circ}$.