(www.tiwariacademy.com) (Chapter – 11) (Mensuration) (Class – VIII)

Exercise 11.3

Question 1:

There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make?

Answer 1:

- (a) Given: Length of cuboidal box (l) = 60 cm
 - Breadth of cuboidal box (b) = 40 cm
 - Height of cuboidal box (h) = 50 cm
 - \therefore Total surface area of cuboidal box = 2(lb+bh+hl)
 - $= 2 (60 \times 40 + 40 \times 50 + 50 \times 60)$
 - = 2 (2400 + 2000 + 3000)
 - $= 2 \times 7400 = 14800 \text{ cm}^2$
- (b) Given: Length of cuboidal box (l) = 50 cm
 - Breadth of cuboidal box (b) = 50 cm
 - Height of cuboidal box (h) = 50 cm
 - \therefore Total surface area of cuboidal box = 2(lb+bh+hl)
 - $= 2 (50 \times 50 + 50 \times 50 + 50 \times 50)$
 - = 2 (2500 + 2500 + 2500)
 - $= 2 \times 7500 = 15000 \text{ cm}^2$

Hence, the cuboidal box (a) requires the lesser amount of material to make, since surface area of box (a) is less than that of box (b).

Question 2:

A suitcase with measures 80 cm x 48 cm x 24 cm is to be covered with a tarpaulin cloth. How many meters of tarpaulin of width 96 cm is required to cover 100 such suitcases?

Answer 2:

- Given: Length of suitcase box (l) = 80 cm,
 - Breadth of suitcase box (b) = 48 cm
 - And Height of cuboidal box (h) = 24 cm
 - \therefore Total surface area of suitcase box = 2(lb+bh+hl)
 - $= 2 (80 \times 48 + 48 \times 24 + 24 \times 80)$
 - = 2 (3840 + 1152 + 1920)
 - = 2 x 6912 = 13824 cm²

Area of Tarpaulin cloth = Surface area of suitcase

- $\Rightarrow l \times b = 13824$
- $\Rightarrow l \times 96 = 13824$
- $\Rightarrow l = \frac{13824}{96} = 144 \text{ cm}$

Required tarpaulin for 100 suitcases = $144 \times 100 = 14400 \text{ cm} = 144 \text{ m}$ Hence, the tarpaulin cloth required to cover 100 suitcases is 144 m.

www.tiwariacademy.com

A Free web support in Education

(www.tiwariacademy.com)
(Chapter - 11) (Mensuration)
(Class - VIII)

Question 3:

Find the side of a cube whose surface area id 600 cm².

Answer 3:

Here Surface area of cube = 600 cm²

$$\Rightarrow$$
 $6l^2 = 600$ $\Rightarrow l^2 = 100$ $\Rightarrow l = 10$ cm

Hence the side of cube is 10 cm

Question 4:

Rukshar painted the outside of the cabinet of measure 1 m \times 2 m \times 1.5 m. How much surface area did she cover if she painted all except the bottom of the cabinet?

Answer 4:

Here,

Length of cabinet (l) = 2 m,

Breadth of cabinet (b) = 1 m

And Height of cabinet (h) = 1.5 m

=
$$2 \times 1 + 2 (1 \times 1.5 + 1.5 \times 2)$$

= $2 + 2 (1.5 + 3.0) = 2 + 9.0 = 11 \text{ m}^2$

Hence, the required surface area of cabinet is 11 m².

Daniel is paining the walls and ceiling of a cuboidal hall with length, breadth and height of 15 m, 10 m and 7 m respectively. From each can of paint $100 \, \text{m}^2$ of area is painted. How many cans of paint will she need to paint the room?

Answer 5:

Here,

Length of wall (l) = 15 m, Breadth of wall (b) = 10 m and Height of wall (h) = 7 m

 \therefore Total Surface area of classroom = lb + 2(bh + hl)

Now Required number of cans = $\frac{\text{Area of hall}}{\text{Area of one can}} = \frac{500}{100} = 5 \text{ cans}$

Hence, 5 cans are required to paint the room.

Question 6:

Describe how the two figures below are alike and how they are different. Which box has larger lateral surface area?

Given: Diameter of cylinder = 7 cm

$$\therefore$$
 Radius of cylinder $(r) = \frac{7}{2}$ cm

And Height of cylinder (h) = 7 cm

www.tiwariacademy.com

A Free web support in Education

(www.tiwariacademy.com)

(Chapter - 11) (Mensuration)

(Class - VIII)

Lateral surface area of cylinder = $2\pi rh$ = $2 \times \frac{22}{7} \times \frac{7}{2} \times 7 = 154 \text{ cm}^2$

Now lateral surface area of cube = $4l^2 = 4 \times (7)^2 = 4 \times 49 = 196 \text{ cm}^2$

Hence, the cube has larger lateral surface area.

Question 7:

A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required?

Given: Radius of cylindrical tank (r) = 7 m

Height of cylindrical tank (h) = 3 m

Total surface area of cylindrical tank = $2\pi r(h+r)$

$$=2\times\frac{22}{7}\times7(3+7)$$

$$= 44 \times 10 = 440 \text{ m}^2$$

Hence, 440 m² metal sheet is required.

Question 8:

The lateral surface area of a hollow cylinder is 4224 cm². It is cut along its height and formed a rectangular sheet of width 33 cm. Find the perimeter of rectangular sheet?

Answer 8:

Given: Lateral surface area of hollow cylinder = 4224 cm²

And Height of hollow cylinder = 33 cm

Curved surface area of hollow cylinder = $2\pi rh$

$$\Rightarrow 4224 = 2 \times \frac{22}{7} \times r \times 33$$

$$\Rightarrow r = \frac{4224 \times 7}{2 \times 22 \times 33} = \frac{64 \times 7}{22} \text{ cm}$$

Now Length of rectangular sheet = $2\pi r$

$$\Rightarrow l = 2 \times \frac{22}{7} \times \frac{64 \times 7}{22} = 128 \text{ cm}$$

Perimeter of rectangular sheet = 2(l+b)

$$= 2 (128 + 33) = 2 \times 161 = 322 \text{ cm}$$

Hence, the perimeter of rectangular sheet is 322 cm.

Question 9:

A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length 1 m.

Answer 9:

Given: Diameter of road roller = 84 cm

$$\therefore \text{ Radius of road roller } (r) = \frac{d}{2} = \frac{84}{2} = 42 \text{ cm}$$

www.tiwariacademy.com

A Free web support in Education

(www.tiwariacademy.com)

(Chapter - 11) (Mensuration)

(Class - VIII)

Length of road roller (h) = 1 m = 100 cm

Curved surface area of road roller = $2\pi rh$ = $2\frac{22}{7} \times 42 \times 100 = 26400 \text{ cm}^2$

∴ Area covered by road roller in 750 revolutions = 26400×750 = $1,98,00,000 \text{ cm}^2$ = 1980 m^2

[:: 1 m² = 10,000 cm²]

-14 cm-

Hence, the area of the road is 1980 m².

Question 10:

A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm. Company places a label around the surface of the container (as shown in figure). If the label is placed 2 cm from top and bottom, what is the area of the label?

Answer 10:

Given: Diameter of cylindrical container = 14 cm

:. Radius of cylindrical container $(r) = \frac{d}{2} = \frac{14}{2} = 7$ cm Height of cylindrical container = 20 cm

Height of the label (h) = 20 - 2 - 2 = 16 cm

Curved surface area of label = $2\pi rh = 2\frac{22}{7} \times 7 \times 16 = 704 \text{ cm}^2$

Hence, the area of the label of 704 cm².

