Mathematics

(www.tiwariacademy.com)

(Chapter - 10) (Visualising Solid Shapes) (Class - VIII)

Exercise 10.3

Question 1:

Can a polygon have for its faces:

- (i) 3 triangles
- (ii) 4 triangles
- (iii) a square and four triangles

Answer 1:

- No, a polyhedron cannot have 3 triangles for its faces. (i)
- Yes, a polyhedron can have four triangles which is known as pyramid on (ii) triangular base.
- Yes, a polyhedron has its faces a square and four triangles which makes a (iii) pyramid on square base.

Question 2:

Is it possible to have a polyhedron with any given number of faces? (Hint: Think of a pyramid)

Answer 2:

It is possible, only if the number of faces are greater than or equal to 4.

Ouestion 3:

Which are prisms among the following:

Figure (ii) unsharpened pencil and figure (iv) a box are (iii) prisms.

Unsharpened pencil

Abox

Question 4:

- How are prisms and cylinders alike? (i)
- (ii) How are pyramids and cones alike?

Answer 4:

- A prism becomes a cylinder as the number of sides of its base becomes (i) larger and larger.
- (ii) A pyramid becomes a cone as the number of sides of its base becomes larger and larger.

Question 5:

Is a square prism same as a cube? Explain.

Answer 5:

No, it can be a cuboid also.

Question 6:

Verify Euler's formula for these solids.

Answer 6:

(i) Here, figure (i) contains 7 faces, 10 vertices and 15 edges. Using Euler's formula, we see F + V - E = 2

Putting
$$F = 7$$
, $V = 10$ and $E = 15$,

$$F + V - E = 2$$

$$\Rightarrow$$
 7 + 10 - 5 = 2

$$\Rightarrow$$
 17 - 15 = 2

$$\Rightarrow$$
 2 = 2

$$\Rightarrow$$
 L.H.S. = R.H.S.

www.tiwariacademy.com

A Free web support in Education

Mathematics

(www.tiwariacademy.com)

(Chapter - 10) (Visualising Solid Shapes)

(Class - VIII)

(ii) Here, figure (ii) contains 9 faces, 9 vertices and 16 edges.

Using Euler's formula, we see F + V - E = 2

$$F + V - E = 2$$

$$\Rightarrow$$
 9 + 9 - 16 = 2

$$\Rightarrow$$
 18 - 16 = 2

$$\Rightarrow$$
 2 = 2

$$\Rightarrow$$
 L.H.S. = R.H.S.

Question 7:

Using Euler's formula, find the unknown:

Faces	?	5	20
Vertices	6	?	12
Edges	12	9	?

Answer 7:

$$F = ?, V = 6 \text{ and } E = 12$$

Using Euler's formula, we see F + V - E = 2

$$F + V - E = 2$$

$$\Rightarrow$$
 F + 6 - 12 = 2

$$\Rightarrow$$
 F - 6 = 2

$$\Rightarrow$$
 F = 2 + 6 = 8

Hence there are 8 faces.

In second column,
$$F = 5$$
, $V = ?$ and $E = 9$

Using Euler's formula, we see F + V - E = 2

$$F + V - E = 2$$

$$\Rightarrow$$
 5 + V - 9 = 2

$$\Rightarrow$$
 V - 4 = 2

$$\Rightarrow$$
 V = 2 + 4 = 6

Hence there are 6 vertices.

In third column,

$$F = 20$$
, $V = 12$ and $E = ?$

Using Euler's formula, we see F + V - E = 2

$$F + V - E = 2$$

$$\Rightarrow$$
 20 + 12 - E = 2

$$\Rightarrow$$
 32 - E = 2

$$\Rightarrow$$
 E = 32 - 2 = 30

Hence there are 30 edges.

Question 8:

Can a polyhedron have 10 faces, 20 edges and 15 vertices?

Answer 8:

If
$$F = 10$$
, $V = 15$ and $E = 20$.

Then, we know Using Euler's formula, F + V - E = 2

L.H.S. =
$$F + V - E$$

= $10 + 15 - 20$
= $25 - 20$
= 5

$$R.H.S. = 2$$

Therefore, it does not follow Euler's formula.

www.tiwariacademy.com

A Free web support in Education