(www.tiwariacademy.com)

(Chapter - 5) (Lines and Angles) (Class - VII)

Exercise 5.1

## **Question 1:**

Find the complement of each of the following angles:

#### Answer 1:

Complementary angle = 90° - given angle

- Complement of  $20^{\circ} = 90^{\circ} 20^{\circ} = 70^{\circ}$ (i)
- (ii) Complement of  $63^{\circ} = 90^{\circ} - 63^{\circ} = 27^{\circ}$
- (iii) Complement of  $57^{\circ} = 90^{\circ} - 57^{\circ} = 33^{\circ}$



## **Question 2:**

Find the supplement of each of the following angles:

### Answer 2:

Supplementary angle = 180° - given angle

- Supplement of  $105^{\circ} = 180^{\circ} 105^{\circ} = 75^{\circ}$
- Supplement of  $87^{\circ} = 180^{\circ} 87^{\circ} = 93^{\circ}$ (ii)
- Supplement of  $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$ (iii)



### Question 3:

Identify which of the following pairs of angles are complementary and which are supplementary:

- (i) 65°,115°
- (ii)

(iii) 112°,68°

- (iv) 130°,50°
- 63°,27° (v) 45°, 45°
- 80°,10° (vi)

# Answer 3:

If sum of two angles is 180°, then they are called supplementary angles. If sum of two angles is 90°, then they are called complementary angles.

- (i)  $65^{\circ} + 115^{\circ} = 180^{\circ}$
- These are supplementary angles.
- $63^{\circ} + 27^{\circ} = 90^{\circ}$ (ii)
- These are complementary angles.
- $112^{\circ} + 68^{\circ} = 180^{\circ}$ (iii)
- These are supplementary angles.
- (iv)  $130^{\circ} + 50^{\circ} = 180^{\circ}$
- These are supplementary angles.
- (v)  $45^{\circ} + 45^{\circ} = 90^{\circ}$
- These are complementary angles.
- $80^{\circ} + 10^{\circ} = 90^{\circ}$ (vi)
- These are complementary angles.

## **Question 4:**

Find the angle which is equal to its complement.

## Answer 4:

Let one of the two equal complementary angles be x.

- $x + x = 90^{\circ}$ ...
- $2x = 90^{\circ}$
- $x = \frac{90^{\circ}}{2} = 45^{\circ}$

Thus, 45° is equal to its complement.

www.tiwariacademy.com

A Free web support in Education

1

(www.tiwariacademy.com) (Chapter - 5) (Lines and Angles) (Class - VII)

## Question 5:

Find the angle which is equal to its supplement.

## Answer 5:

Let x be two equal angles of its supplement.

Therefore, 
$$x+x=180^{\circ}$$

$$\Rightarrow$$
  $2x = 180^{\circ}$ 

$$\Rightarrow x = \frac{180^{\circ}}{2} = 90^{\circ}$$

Thus, 90° is equal to its supplement.

## [Supplementary angles]

## Ouestion 6:

In the given figure,  $\angle$  1 and  $\angle$  2 are supplementary angles. If  $\angle$  1 is decreased, what changes should take place in  $\angle$  2 so that both the angles still remain supplementary?



If  $\angle$  1 is decreased then,  $\angle$  2 will increase with the same measure, so that both the angles still remain supplementary.

### Question 7:

Can two angles be supplementary if both of them are:

- (i) acute
- (ii) obtuse
- (iii) right?

#### Answer 7:

- (i) No, because sum of two acute angles is less than 180°.
- (ii) No, because sum of two obtuse angles is more than 180°.
- (iii) Yes, because sum of two right angles is 180°.

## **Question 8:**

An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

# Answer 8:

Let the complementary angles be x and y, i.e.,  $x + y = 90^{\circ}$ 

It is given that  $x > 45^{\circ}$ 

Adding y both sides, 
$$x + y > 45^{\circ} + y$$

$$\Rightarrow$$
 90° > 45° + y

$$\Rightarrow$$
 90° -45° > y

Thus, its complementary angle is less than 45°.

# Question 9:

In the adjoining figure:

- (i) Is  $\angle 1$  adjacent to  $\angle 2$ ?
- (ii) Is ∠ AOC adjacent to ∠ AOE?
- (iii) Do ∠ COE and ∠ EOD form a linear pair?
- (iv) Are ∠ BOD and ∠ DOA supplementary?
- (v) Is  $\angle 1$  vertically opposite to  $\angle 4$ ?
- (vi) What is the vertically opposite angle of  $\angle$  5?



www.tiwariacademy.com
A Free web support in Education

(www.tiwariacademy.com) (Chapter - 5) (Lines and Angles) (Class - VII)

### Answer 9:

- (i) Yes, in ∠ AOE, OC is common arm.
- (ii) No, they have no non-common arms on opposite side of common arm.
- (iii) Yes, they form linear pair.
- (iv) Yes, they are supplementary.
- (v) Yes, they are vertically opposite angles.
- (vi) Vertically opposite angles of  $\angle$  5 is  $\angle$  COB.

# Question 10:

Indicate which pairs of angles are:

- (i) Vertically opposite angles?
- (ii) Linear pairs?

#### Answer 10:

- (i) Vertically opposite angles,  $\angle 1$  and  $\angle 4$ ;  $\angle 5$  and  $\angle 2 + \angle 3$ .
- (ii) Linear pairs  $\angle 1$  and  $\angle 5$ ;  $\angle 5$  and  $\angle 4$ .



## **Question 11:**

In the following figure, is  $\angle 1$  adjacent to  $\angle 2$ ? Give reasons.

#### Answer 11:

 $\angle$  1 and  $\angle$  2 are not adjacent angles because their vertex is not common.



#### **Ouestion 12:**

Find the values of the angles x, y and z in each of the following:

# Answer 12:

(i)  $x = 55^{\circ}$  [Vertically opposite angles]

Now  $55^{\circ} + y = 180^{\circ}$ 

[Linear pair]



Also  $y = z = 125^{\circ}$ 

[Vertically opposite angles]

Thus,  $x = 55^{\circ}$ ,  $y = 125^{\circ}$  and  $z = 125^{\circ}$ .

(ii)  $40^{\circ} + x + 25^{\circ} = 180^{\circ}$ 

[Angles on straight line]

$$\Rightarrow$$
 65°+x=180°

$$\Rightarrow$$
  $x=180^{\circ}-65^{\circ}=115^{\circ}$ 

Now 
$$40^{\circ} + y = 180^{\circ}$$

[Linear pair]

$$\Rightarrow y = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

....(i)

Also 
$$y + z = 180^{\circ}$$

[Linear pair]

$$\Rightarrow$$
 140° + z = 180°

[From equation (i)]

$$\Rightarrow$$
  $z = 180^{\circ} - 140^{\circ} = 40^{\circ}$ 

Thus,  $x = 115^{\circ}$ ,  $y = 140^{\circ}$  and  $z = 40^{\circ}$ .

www.tiwariacademy.com

A Free web support in Education

3

(www.tiwariacademy.com) (Chapter - 5) (Lines and Angles) (Class - VII)

## **Question 13:**

Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is \_\_\_\_\_\_.
- If two angles are supplementary, then the sum of their measures is \_\_\_\_\_ (ii)
- (iii) Two angles forming a linear pair are \_\_\_
- If two adjacent angles are supplementary, they form a \_\_\_\_\_\_. (iv)
- If two lines intersect a point, then the vertically opposite angles are always \_ (v)
- If two lines intersect at a point and if one pair of vertically opposite angles are acute (vi) angles, then the other pair of vertically opposite angles are \_\_\_\_

#### Answer 13:

- (i)
- (ii)
- supplementary (iii)

- 90° (iv) linear pair
- (v) equal

180°

(vi) obtuse angles

#### **Question 14:**

In the adjoining figure, name the following pairs of angles:

- Obtuse vertically opposite angles. (i)
- (ii) Adjacent complementary angles.
- (iii) Equal supplementary angles.
- (iv) Unequal supplementary angles.
- (v) Adjacent angles that do not form a linear pair.



### Answer 14:

- Obtuse vertically opposite angles means greater than 90° and equal  $\angle$  AOD =  $\angle$  BOC. (i)
- (ii) Adjacent complementary angles means angles have common vertex, common arm, non-common arms are on either side of common arm and sum of angles is 90°. i.e., ∠ AOB, ∠ AOE
- Equal supplementary angles means sum of angles is 180° and supplement angles are (iii) equal.
  - i.e., ∠ BOE, ∠ DOE
- Unequal supplementary angles means sum of angles is 180° and supplement angles (iv) are unequal.
  - $\angle$  AOE,  $\angle$  EOC; i.e.,  $\angle$  AOD,  $\angle$  DOC and  $\angle$  AOB,  $\angle$  BOC
- Adjacent angles that do not form a linear pair mean, angles have common ray but the (v) angles in a linear pair are not supplementary.
  - $\angle$  AOB,  $\angle$  AOE;  $\angle$  AOE,  $\angle$  EOD and  $\angle$  EOD,  $\angle$  COD i.e.,