(www.tiwariacademy.com) (Chapter - 3) (Playing With Numbers) (Class - VI)

Exercise 3.3

Question 1:

Using divisibility test, determine which of the following numbers are divisible by 2; by 3; by 4; by 5; by 6; by 8; by 9; by 10; by 11. (Say yes or no)

Number	Divisible by									
	2	3	4	5	6	8	9	10	11	
128 990 1586 275 6686 639210 429714 2856 3060 406839	Yes	No	Yes	No	No	Yes	No	No	No	

Answer 1:

Number	Divisible by									
	2	3	4	5	6	8	9	10	11	
128	Yes	No	Yes	No	No	Yes	No	No	No	
990	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	
1586	Yes	No								
275	No	No	No	Yes	No	No	No	No	Yes	
6686	Yes	No								
639210	Yes	Yes	No	Yes	Yes	No	No	Yes	Yes	
429714	Yes	Yes	No	No	Yes	No	Yes	No	No	
2856	Yes	Yes	Yes	No	Yes	Yes	No	No	No	
3060	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	
406839	No	Yes	No							

Question 2:

Using divisibility test, determine which of the following numbers are divisibly by 4; by 8:

- (a) 572
- (b) 726352
- (c) 5500
- (d) 6000

- (e) 12159 (i) 1700
- (f) 14560 (j) 2150
- (g) 21084
- (h) 31795072

- Answer 2:
 - (a) 572
- \rightarrow Divisible by 4 as its last two digits are divisible by 4.
- \rightarrow Not divisible by 8 as its last three digits are not divisible by 8.
- (b) 726352
- \rightarrow Divisible by 4 as its last two digits are divisible by 4.
- \rightarrow Divisible by 8 as its last three digits are divisible by 8.
- (c) 5500
- \rightarrow Divisible by 4 as its last two digits are divisible by 4.
- \rightarrow Not divisible by 8 as its last three digits are not divisible by 8.
- (d) 6000
- \rightarrow Divisible by 4 as its last two digits are 0.
- \rightarrow Divisible by 8 as its last three digits are 0.
- (e) 12159
- ightarrow Not divisible by 4 and 8 as it is an odd number.

www.tiwariacademy.com

A Free web support in Education

(www.tiwariacademy.com) (Chapter - 3) (Playing With Numbers)

(Class - VI)

(f) 14560	\rightarrow Divisible by 4 as its last two digits are divisible by 4.
(-)	, britished by read the read time and the control by re

ightarrow Divisible by 8 as its last three digits are divisible by 8.

(g) 21084 \rightarrow Divisible by 4 as its last two digits are divisible by 4.

 \rightarrow Not divisible by 8 as its last three digits are not divisible by 8.

(h) 31795072 \rightarrow Divisible by 4 as its last two digits are divisible by 4.

 \rightarrow Divisible by 8 as its last three digits are divisible by 8.

(i) 1700 \rightarrow Divisible by 4 as its last two digits are 0.

 \rightarrow Not divisible by 8 as its last three digits are not divisible by 8.

(j) 5500 \rightarrow Not divisible by 4 as its last two digits are not divisible by 4.

 \rightarrow Not divisible by 8 as its last three digits are not divisible by 8.

Question 3:

Using divisibility test, determine which of the following numbers are divisible by 6:

- (a) 297144
- (b) 1258
- (c) 4335
- (d) 61233

- (e) 901352
- (f) 438750
- (g) 1790184
- (h) 12583

- (i) 639210
- (j) 17852

Answer 3:

- (a) 297144 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Divisible by 3 as sum of its digits (= 27) is divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is also divisible by 6.

- (b) 1258 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Not divisible by 3 as sum of its digits (= 16) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

- (c)4335
- → Not divisible by 2 as its units place is not an even number.
- \rightarrow Divisible by 3 as sum of its digits (= 15) is divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

- (d) 61233
- \rightarrow Not divisible by 2 as its units place is not an even number.
- → Divisible by 3 as sum of its digits (= 15) is divisible by 3. Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

(e) $901352 \rightarrow \text{Divisible by 2 as its units place is an even number.}$

 \rightarrow Not divisible by 3 as sum of its digits (= 20) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

- (f) 438750 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Divisible by 3 as sum of its digits (= 27) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

- (g) 1790184 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Divisible by 3 as sum of its digits (= 30) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

- (h) 12583 \rightarrow Not divisible by 2 as its units place is not an even number.
 - \rightarrow Not divisible by 3 as sum of its digits (= 19) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

- (i) 639210 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Divisible by 3 as sum of its digits (= 21) is not divisible by 3.

Since the number is divisible by both 2 and 3, therefore, it is divisible by 6.

- (j) 17852 \rightarrow Divisible by 2 as its units place is an even number.
 - \rightarrow Not divisible by 3 as sum of its digits (= 23) is not divisible by 3.

Since the number is not divisible by both 2 and 3, therefore, it is not divisible by 6.

www.tiwariacademy.com

A Free web support in Education

(www.tiwariacademy.com) (Chapter - 3) (Playing With Numbers) (Class - VI)

Question 4:

Using divisibility test, determine which of the following numbers are divisible by 11:

- (a) 5445
- (b) 10824
- (c) 7138965
- (d) 70169308

- (e) 10000001
- (f) 901153

Answer 4:

- (a) 5445
- \rightarrow Sum of the digits at odd places = 4 + 5 = 9
- \rightarrow Sum of the digits at even places = 4 + 5 = 9
- \rightarrow Difference of both sums = 9 9 = 0

Since the difference is 0, therefore, the number is divisible by 11.

- (b) 10824
- \rightarrow Sum of the digits at odd places = 4 + 8 +1 = 13
- \rightarrow Sum of the digits at even places = 2 + 0 = 2
- \rightarrow Difference of both sums = 13 2 = 11

Since the difference is 11, therefore, the number is divisible by 11.

- (c) 7138965
- \rightarrow Sum of the digits at odd places = 5 + 9 + 3 + 7 = 24
- \rightarrow Sum of the digits at even places = 6 + 8 + 1 = 15
- \rightarrow Difference of both sums = 24 15 = 9

Since the difference is neither 0 nor 11, therefore, the number is not divisible by 11.

- (d) $70169308 \rightarrow \text{Sum of the digits at odd places} = 8 + 3 + 6 + 0 = 17$
 - \rightarrow Sum of the digits at even places = 0 + 9 + 1 + 7 = 17
 - \rightarrow Difference of both sums = 17 17 = 0

Since the difference is 0, therefore, the number is divisible by 11.

- (e) $10000001 \rightarrow \text{Sum of the digits at odd places} = 1 + 0 + 0 + 0 = 1$
 - \rightarrow Sum of the digits at even places = 0 + 0 + 0 + 1 = 1
 - \rightarrow Difference of both sums = 1 1 = 0

Since the difference is 0, therefore, the number is divisible by 11.

- (f) 901153
- \rightarrow Sum of the digits at odd places = 3 + 1 + 0 = 4
- \rightarrow Sum of the digits at even places = 5 + 1 + 9 = 15
- \rightarrow Difference of both sums = 15 4 = 11

Since the difference is 11, therefore, the number is divisible by 11.

Question 5:

Write the smallest digit and the largest digit in the blanks space of each of the following numbers so that the number formed is divisibly by 3:

(a) _____ 6724

(b) 4765 _____ 2

- (a) We know that a number is divisible by 3 if the sum of all digits is divisible by 3.
 - Therefore, Smallest digit: 2 \rightarrow
- 26724 = 2 + 6 + 7 + 2 + 4 = 21
- Largest digit: 8

Largest digit: 9

- 86724 = 8 + 6 + 7 + 2 + 4 = 27
- (b) We know that a number is divisible by 3 if the sum of all digits is divisible by 3. \rightarrow

 \rightarrow

- Therefore, Smallest digit: 0
- $4765\underline{0}2 = 4 + 7 + 6 + 5 + 0 + 2 = 24$ 476592 = 4 + 7 + 6 + 5 + 0 + 2 = 33

www.tiwariacademy.com

A Free web support in Education

 \rightarrow

(www.tiwariacademy.com) (Chapter - 3) (Playing With Numbers) (Class - VI)

Question 6:

Write the smallest digit and the largest digit in the blanks space of each of the following numbers so that the number formed is divisibly by 11:

 \rightarrow

(a) We know that a number is divisible by 11 if the difference of the sum of the digits at odd places and that of even places should be either 0 or 11.

Odd places =
$$9 + 8 + 8 = 25$$

Even places = $2 + 3 + 9 = 14$
Difference = $25 - 14 = 11$

(b) We know that a number is divisible by 11 if the difference of the sum of the digits at odd places and that of even places should be either 0 or 11.

