Mathematics

(www.tiwariacademy.com) (Chapter – 14) (Practical Geometry) (Class – VI)

Exercise 14.2

Question 1:

Draw a line segment of length 7.3 cm, using a ruler.

Answer 1:

Steps of construction:

- (i) Place the zero mark of the ruler at a point A.
- (ii) Mark a point B at a distance of 7.3 cm from A.
- (iii) Join AB.

Hence, \overline{AB} is the required line segment of length 7.3 cm.

Ouestion 2:

Construct a line segment of length 5.6 cm using ruler and compasses.

Answer 2:

5.6 cm

Steps of construction:

- (i) Draw a line l. Mark a point A on this line.
- (ii) Place the compasses pointer on zero mark of the ruler. Open it to place the pencil point up to 5.6 cm mark.
- (iii) Without changing the opening of the compasses. Place the pointer on A and cut an arc 'l' at B.

 \overline{AB} is the required line segment of length 5.6 cm.

Question 3:

Construct \overline{AB} of length 7.8 cm. From this cut off \overline{AC} of length 4.7 cm. Measure \overline{BC} .

Answer 3:

Steps of construction:

- (i) Place the zero mark of the ruler at A.
- (ii) Mark a point B at a distance 7.8 cm from A.
- (iii) Again, mark a point C at a distance 4.7 from A.

Hence, by measuring \overline{BC} , we find that BC = 3.1 cm

Question 4:

Given \overline{AB} of length 3.9 cm, construct \overline{PQ} such that the length \overline{PQ} is twice that of \overline{AB} . Verify by measurement.

(**Hint**: Construct \overline{PX} such that length of \overline{PX} = length of \overline{AB} ; then cut off \overline{XQ} such that \overline{XQ} also has the length of \overline{AB} .

www.tiwariacademy.com

A Free web support in Education

Mathematics

(www.tiwariacademy.com) (Chapter – 14) (Practical Geometry) (Class – VI)

Answer 4:

Steps of construction:

- (i) Draw a line l'.
- (ii) Construct \overline{PX} such that length of \overline{PX} = length of \overline{AB}
- (iii) Then cut of \overline{XQ} such that \overline{XQ} also has the length of \overline{AB} .
- (iv) Thus the length of \overline{PX} and the length of \overline{XQ} added together make twice the length of \overline{AB} .

Verification:

Hence, by measurement we find that PQ = 7.8 cm= 3.9 cm + 3.9 cm= $\overline{AB} + \overline{AB} = 2 \text{ x} \overline{AB}$

Question 5:

Given \overline{AB} of length 7.3 cm and \overline{CD} of length 3.4 cm, construct a line segment \overline{XY} such that the length of \overline{XY} is equal to the difference between the lengths of \overline{AB} and \overline{CD} . Verify by measurement.

Answer 5:

Steps of construction:

- (i) Draw a line l' and take a point X on it.
- (ii) Construct \overline{XZ} such that length \overline{XZ} = length of \overline{AB} = 7.3 cm
- (iii) Then cut off \overline{ZY} = length of \overline{CD} = 3.4 cm
- (iv) Thus the length of \overline{XY} = length of \overline{AB} length of \overline{CD}

Verification:

Hence, by measurement we find that length of \overline{XY} = 3.9 cm = 73. Cm - 3.4 cm = $\overline{AB} - \overline{CD}$