(www.tiwariacademy.in)

(Chapter - 7) (Coordinate Geometry) (Class 10)

Exercise 7.2

Question 1:

Find the coordinates of the point which divides the join of (-1, 7) and (4, -3) in the ratio 2:3.

Let the point *P* divides the line joining the points A(-1,7) and B(4,-3) into 2:3.

$$A(-1,7)$$
 2 P 3 $B(4,-3)$

Using section formula $\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$, the coordinates of P are given by

$$= \left(\frac{2 \times 4 + 3 \times (-1)}{2 + 3}, \frac{2 \times (-3) + 3 \times 7}{2 + 3}\right) = \left(\frac{5}{5}, \frac{15}{5}\right) = (1, 3)$$

Question 2:

Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3).

Let the points P and Q be the points of trisection of the line joining A(4,-1) and B(-2,-3).

$$A(4,-1)$$
 1 P 1 Q $1B(-2,-3)$

Hence, AP: PB = 1: 2

Using section formula:

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

The coordinates of *P* are given by

$$= \left(\frac{1 \times (-2) + 2 \times 4}{1 + 2}, \frac{1 \times (-3) + 2 \times (-1)}{1 + 2}\right) = \left(\frac{6}{3}, \frac{-5}{3}\right) = \left(2, -\frac{5}{3}\right)$$

and, AQ: QB = 2:1

Using section formula
$$\left(\frac{m_1x_2+m_2x_1}{m_1+m_2}, \frac{m_1y_2+m_2y_1}{m_1+m_2}\right)$$
, the coordinates of Q are given by
$$= \left(\frac{2\times (-2)+1\times 4}{2+1}, \frac{2\times (-3)+1\times (-1)}{2+1}\right) = \left(\frac{0}{3}, \frac{-7}{3}\right) = \left(0, -\frac{7}{3}\right)$$

Question 3:

To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1m each. 100 flower pots have been placed at a distance of 1m from each other along AD, as shown in Figure. Niharika runs $\frac{1}{4}$ th the distance AD on the 2nd line and posts a green flag. Preet runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 7) (Coordinate Geometry) (Class 10)

Answer 3:

Niharika runs $\frac{1}{4}$ th the distance AD on the 2nd line and posts a green flag.

Therefore, the coordinates of the flag posted by Niharika = $N\left(2, \frac{1}{4} \times 100\right) = N(2, 25)$

Preet runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag.

Therefore, the coordinates of flag posted by Preet = $P\left(8, \frac{1}{5} \times 100\right) = P(8, 20)$

Distance between the two flags = $NP = \sqrt{(8-2)^2 + (20-25)^2} = \sqrt{36+25} = \sqrt{61}$

If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, then the coordinates of the flag posted by Rashmi = coordinates of mid points of NP

$$= R\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) = R\left(\frac{2+8}{2}, \frac{25+20}{2}\right) = R\left(5, \frac{45}{2}\right) = R(5, 22.5)$$

Hence, Rashmi should post her flag in fifth line at a distance of 22.5 m.

Question 4:

Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).

Answer 4:

Let the point P(-1, 6), divides the line segment joining A(-3, 10) and B(6, -8) into k: 1.

$$A(-3,10)$$
 k $P(-1,6)$ 1 $B(6,-8)$

Using the section formula $\left(\frac{k \cdot x_2 + 1 \cdot x_1}{k + 1}, \frac{k \cdot y_2 + 1 \cdot y_1}{k + 1}\right)$, the coordinates of point *P*

$$P(-1,6) = \left(\frac{k \times 6 + 1 \times (-3)}{k+1}, \frac{k \times (-8) + 1 \times 10}{k+1}\right)$$

$$\Rightarrow P(-1,6) = \left(\frac{6k-3}{k+1}, \frac{-8k+10}{k+1}\right)$$

On comparing

On comparing
$$\frac{6k-3}{k+1} = -1 \quad \text{and} \quad \frac{-8k+10}{k+1} = 6$$

$$\Rightarrow 6k-3 = -k-1$$

$$\Rightarrow 7k = 2 \quad \Rightarrow k = \frac{2}{7}$$

$$\Rightarrow 6k - 3 = -k - 1$$

$$\Rightarrow 7k = 2$$
 $\Rightarrow k = \frac{2}{7}$

Hence, the point P(-1,6), divides the line segment joining the points A(-3,10) and B(6,-8) into 2: 7.

Ouestion 5:

Find the ratio in which the line segment joining A(1, -5) and B(-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.

Answer 5:

Let the line segment joining the points A(1,-5) and B(-4,5) is divided by x —axis at point P(x,0) into

$$A(1,-5)$$
 k $P(x,0)$ 1 $B(-4,5)$

Using the section formula $\left(\frac{k.x_2+1.x_1}{k+1}, \frac{k.y_2+1.y_1}{k+1}\right)$, the coordinates of point P

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter - 7) (Coordinate Geometry)

(Class 10)

$$P(x,0) = \left(\frac{k \times (-4) + 1 \times 1}{k+1}, \frac{k \times 5 + 1 \times (-5)}{k+1}\right) \Rightarrow P(x,0) = \left(\frac{-4k+1}{k+1}, \frac{5k-5}{k+1}\right)$$

On comparing

$$\frac{-4k+1}{k+1} = x \quad \text{and} \quad \frac{5k-5}{k+1} = 0$$

 $\Rightarrow 5k - 5 = 0 \Rightarrow k = 1$ Putting the value of k in $\frac{-4k+1}{k+1} = x$, we have

$$\frac{-4(1)+1}{1+1} = x \qquad \Rightarrow x = -\frac{3}{2}$$

Hence, the line segment joining the points A(1, -5) and B(-4, 5) is divided by x —axis at point $P\left(-\frac{3}{2}, 0\right)$ into 1: 1.

Question 6:

If (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.

Answer 6:

Given that: Points A(1,2), B(4,y), C(x,6) and D(3,5) are vertices of a parallelogram.

The diagonals of parallelogram bisect each other. Therefore,

Coordinates of mid points of AC = Coordinates of mid points of BD

$$\Rightarrow \left(\frac{1+x}{2}, \frac{2+6}{2}\right) = \left(\frac{3+4}{2}, \frac{5+y}{2}\right)$$

On comparing

$$\frac{1+x}{2} = \frac{7}{2} \quad \text{and} \quad \frac{8}{2} = \frac{5+y}{2}$$

$$\Rightarrow 1+x=7 \quad \text{and} \quad 8=5+y$$

$$\Rightarrow x=6 \quad \text{and} \quad y=3$$

Question 7:

Find the coordinates of a point A, where AB is the diameter of a circle whose centre is (2, -3) and B is (1, 4).

Answer 7:

Here, AB is the diameter of circle with centre O(2, -3) and the coordinates of B (1, 4). Let the coordinates of point A is (x, y).

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter - 7) (Coordinate Geometry)

(Class 10)

The centre O(2, -3) is the mid-point of the diameter AB, therefore

Coordinates of mid-point of
$$AB =$$
Coordinates of point O

$$\Rightarrow \left(\frac{x+1}{2}, \frac{y+4}{2}\right) = (2, -3)$$

On comparing,

$$\frac{x+1}{2} = 2$$
 and $\frac{y+4}{2} = -3$

$$\Rightarrow x + 1 = 4 \quad \text{and} \quad y + 4 = -6$$

$$\Rightarrow x = 3$$
 and $y = -10$

Hence, the coordinates of A is (3, -10).

Question 8:

If A and B are (-2, -2) and (2, -4), respectively, find the coordinates of P such that $AP = \frac{3}{7}AB$ and P lies on the line segment AB.

Answer 8:

Given that: $AP = \frac{3}{7}AB$, therefore, $BP = \frac{4}{7}AB$

$$\Rightarrow AP: PB = 3:4$$

The point *P* divides the line segment joining the points A(-2, -2) and B(2, -4) into 3: 4.

$$A(-2,-2)$$
 3 P 4 $B(2,-4)$

Using section formula

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

The coordinates of P is given by

$$= \left(\frac{3 \times 2 + 4 \times (-2)}{3 + 4}, \frac{3 \times (-4) + 4 \times (-2)}{3 + 4}\right) = \left(-\frac{2}{7}, -\frac{20}{7}\right)$$

Hence, the coordinates of P is $\left(-\frac{2}{7}, -\frac{20}{7}\right)$.

Question 9:

Find the coordinates of the points which divide the line segment joining A(-2, 2) and B(2, 8) into four equal parts.

Answer 9:

Let the points P, Q and R divides the line segment joining the points A(-2,2) and B(2,8) in to four equal parts.

$$A(-2,2)$$
 1 P 1 Q 1 R 1 $B(2,8)$

Therefore, AP: PB = 1:3

Using section formula

$$\left(\frac{m_1x_2 + m_2x_1}{m_1 + m_2}, \frac{m_1y_2 + m_2y_1}{m_1 + m_2}\right)$$

The coordinates of P is given by

$$= \left(\frac{1 \times 2 + 3 \times (-2)}{1 + 3}, \frac{1 \times 8 + 3 \times 2}{1 + 3}\right) = \left(\frac{-4}{4}, \frac{14}{4}\right) = \left(-1, \frac{7}{2}\right)$$

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter - 7) (Coordinate Geometry)

(Class 10)

Since, AQ: QB = 2: 2, therefor the coordinates of point Q is given by

$$= \left(\frac{2 \times 2 + 2 \times (-2)}{2 + 2}, \frac{2 \times 8 + 2 \times 2}{2 + 2}\right)$$
$$= \left(\frac{0}{4}, \frac{20}{4}\right) = (0, 5)$$

Since, AR: RB = 3:1, therefore the coordinates of Q is given by

$$= \left(\frac{3 \times 2 + 1 \times (-2)}{3 + 1}, \frac{3 \times 8 + 1 \times 2}{3 + 1}\right)$$
$$= \left(\frac{4}{4}, \frac{26}{4}\right) = \left(1, \frac{13}{2}\right)$$

Hence, the points $P\left(-1,\frac{7}{2}\right)$, Q(0,5) and $R\left(1,\frac{13}{2}\right)$ divides AB in four equal parts.

Question 10:

Find the area of a rhombus if its vertices are (3, 0), (4, 5), (-1, 4) and (-2, -1) taken in order. [**Hint:** Area of a rhombus = $\frac{1}{2}$ (product of its diagonals)]

Answer 10:

The vertices of rhombus ABCD are A(3,0), B(4,5), C(-1,4) and D(-2,-1).

Diagonal
$$AC = \sqrt{(-1-3)^2 + (4-0)^2} = \sqrt{16+16} = \sqrt{32} = 4\sqrt{2}$$

Diagonal
$$BD = \sqrt{(-2-4)^2 + (-1-5)^2} = \sqrt{36+36} = \sqrt{72} = 6\sqrt{2}$$

Area of rhombus = $\frac{1}{2}$ (Product of two diagonals)

$$= \frac{1}{2} \times AC \times BD$$
$$= \frac{1}{2} \times 4\sqrt{2} \times 6\sqrt{2}$$

= 24 square units

www.tiwariacademy.in

A Free web support in Education

5