(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Exercise 3.5

Question 1:

Which of the following pairs of linear equations has unique solution, no solution, or infinitely many solutions. In case there is a unique solution, find it by using cross multiplication method.

(i)
$$x - 3y - 3 = 0$$
; $3x - 9y - 2 = 0$

(ii)
$$2x + y = 5$$
; $3x + 2y = 8$

(iii)
$$3x - 5y = 20$$
; $6x - 10y = 40$

(iv)
$$x - 3y - 7 = 0$$
; $3x - 3y - 15 = 0$

Answer 1:

(i)
$$x - 3y - 3 = 0$$
 ... (1)

$$3x - 9y - 2 = 0$$
 ... (2)

$$3x - 9y - 2 = 0 \qquad (2)$$
Here, $\frac{a_1}{a_2} = \frac{1}{3}$, $\frac{b_1}{b_2} = \frac{-3}{-9} = \frac{1}{3}$ and $\frac{c_1}{c_2} = \frac{-3}{-2} = \frac{3}{2}$

 $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$, so, pairs of linear equations has no solution.

(ii)
$$2x + y - 5 = 0$$

$$3x + 2y - 8 = 0$$

Here,
$$\frac{a_1}{a_2} = \frac{2}{3}$$
 and $\frac{b_1}{b_2} = \frac{1}{2}$

 $\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, pairs of linear equations has a unique solution.

By cross-multiplication method,

$$\frac{x}{1 \times (-8) - 2 \times (-5)} = \frac{y}{(-5) \times 3 - (-8) \times 2} = \frac{1}{2 \times 2 - 3 \times 1}$$

$$\Rightarrow \frac{x}{2} = \frac{y}{1} = \frac{1}{1} \quad \Rightarrow x = 2 \quad \text{and} \quad y = 1$$
Hence, $x = 2$ and $y = 1$.

$$\Rightarrow \frac{x}{2} = \frac{y}{1} = \frac{1}{1}$$
 $\Rightarrow x = 2$ and $y = 1$

Hence, x = 2 and y = 1.

(iii)
$$3x - 5y - 20 = 0$$

$$6x - 10y - 40 = 0$$

Hence,
$$x = 2$$
 and $y = 1$.
(iii) $3x - 5y - 20 = 0$... (1) ... (2)
Here, $\frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2}$, $\frac{b_1}{b_2} = \frac{-5}{-10} = \frac{1}{2}$ and $\frac{c_1}{c_2} = \frac{-20}{-40} = \frac{1}{2}$

 $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, so, the pairs of linear equations has infinite many solutions.

(v)
$$x - 3y - 7 = 0$$

$$3x - 3y - 15 = 0$$

Here,
$$\frac{a_1}{a_2} = \frac{1}{3}$$
 and $\frac{b_1}{b_2} = \frac{-3}{-3} = \frac{1}{1}$

 $\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, so, the pairs of linear equations has a unique solution.

By cross-multiplication method,

$$\frac{x}{(-3) \times (-15) - (-3) \times (-7)} = \frac{y}{(-7) \times 3 - (-15) \times 1} = \frac{1}{1 \times (-3) - 3 \times (-3)}$$

$$\Rightarrow \frac{x}{24} = \frac{y}{-6} = \frac{1}{6}$$

$$\Rightarrow x = 4 \quad \text{and} \quad y = -1$$

Hence, x = 4 and y = -1.

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Question 2:

(i) For which values of a and b does the following pair of linear equations have an infinite number of solutions?

$$2x + 3y = 7$$
$$(a - b)x + (a + b)y = 3a + b - 2$$

(ii) For which value of k will the following pair of linear equations have no solution?

$$3x + y = 1$$
$$(2k - 1)x + (k - 1)y = 2k + 1$$

Answer 2:

(i)
$$2x + 3y = 7$$
 ... (1)

$$(a-b)x + (a+b)y = 3a + b - 2$$
 ... (2)

Here,
$$\frac{a_1}{a_2} = \frac{2}{a-b}$$
, $\frac{b_1}{b_2} = \frac{3}{a+b}$ and $\frac{c_1}{c_2} = \frac{7}{3a+b-2}$

Pair of linear equations have an infinite number of solutions, if

$$\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \qquad \Rightarrow \frac{2}{a-b} = \frac{3}{a+b} = \frac{7}{3a+b-2}$$
$$\Rightarrow \frac{2}{a-b} = \frac{3}{a+b} \qquad \text{and} \qquad \frac{3}{a+b} = \frac{7}{3a+b-2}$$

$$\Rightarrow 2(a+b) = 3(a-b)$$
 and $3(3a+b-2) = 7(a+b)$

$$\Rightarrow 2a + 2b = 3a - 3b$$
 and $9a + 3b - 6 = 7a + 7b$

$$\Rightarrow a = 5b$$
 and $2a = 4b + 6$

Solving the two equations, we get

$$\Rightarrow a = 5$$
 and $b = 1$

Question 3:

Solve the following pair of linear equations by the substitution and cross-multiplication methods:

$$8x + 5y = 9$$
$$3x + 2y = 4$$

Answer 3:

Substitution method:

$$8x + 5y = 9$$
 ... (1)

$$3x + 2y = 4$$
 ... (2)

From the equation (1), we get

$$y = \frac{9-8x}{5}$$
 ... (3)

Putting the value of y in equation (2), we get

$$3x + 2\left(\frac{9 - 8x}{5}\right) = 4$$

$$\Rightarrow 15x + 18 - 16x = 20$$

$$\Rightarrow -x = 2 \Rightarrow x = -2$$

Putting the value of
$$x$$
 in equation (3), we get

$$y = \frac{9 - 8(-2)}{5} = 5$$

Hence, x = -2 and y = 5.

Cross-multiplication method:

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

$$3x + 2y - 4 = 0$$

By cross-multiplication method,

$$\frac{x}{5 \times (-4) - 2 \times (-9)} = \frac{y}{(-9) \times 3 - (-4) \times 8} = \frac{1}{8 \times 2 - 3 \times 5}$$

$$\Rightarrow \frac{x}{-2} = \frac{y}{5} = \frac{1}{1} \quad \Rightarrow x = -2 \quad \text{and} \quad y = 5$$

Hence, x = -2 and y = 5.

Question 4:

Form the pair of linear equations in the following problems and find their solutions (if they exist) by any algebraic method:

- (i) A part of monthly hostel charges is fixed and the remaining depends on the number of days one has taken food in the mess. When a student A takes food for 20 days she has to pay ₹1000 as hostel charges whereas a student B, who takes food for 26 days, pays ₹1180 as hostel charges. Find the fixed charges and the cost of food per day.
- (ii) A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.
- (iii) Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each correct answer and 2 marks been deducted for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test?
- (iv) Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?
- (v) The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.

Answer 4:

If a student A takes food for 20 days she has to pay ₹1000 as hostel charges, therefore

$$x + 20y = 1000$$

$$\Rightarrow x + 20y - 1000 = 0 \qquad ... (1)$$

If a student B takes food for 26 days she has to pay ₹1180 as hostel charges, therefore

$$x + 26y = 1180$$

$$\Rightarrow x + 26y - 1180 = 0 \qquad ... (2)$$

By cross-multiplication method,

$$\frac{x}{20 \times (-1180) - 26 \times (-1000)} = \frac{y}{(-1000) \times 1 - (-1180) \times 1} = \frac{1}{1 \times 26 - 1 \times 20}$$

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

$$\Rightarrow \frac{x}{-23600 + 26000} = \frac{y}{-1000 + 1180} = \frac{1}{6} \Rightarrow \frac{x}{2400} = \frac{y}{180} = \frac{1}{6}$$

$$\Rightarrow x = 400$$
 and $y = 30$

Hence, the fixed charge is ₹400 and charge for food per day is ₹30.

(ii) Let the numerator = xLet the denominator = y

Therefore, the fraction = $\frac{x}{100}$

According to first condition,

$$\frac{x-1}{y} = \frac{1}{3} \implies 3x - 3 = y$$

$$\Rightarrow 3x - y - 3 = 0$$

... (1)

According to second condition,

$$\frac{x}{y+8} = \frac{1}{4}$$

$$\Rightarrow 4x = y + 8$$

$$\Rightarrow 4x - y - 8 = 0$$

By cross-multiplication method,

$$\frac{y}{x \cdot 4 - (-8) \times 3} = \frac{1}{3 \times (-1) - 4 \times (-1)}$$

$$\frac{x}{(-1) \times (-8) - (-1) \times (-3)} = \frac{y}{(-3) \times 4 - (-8) \times 3} = \frac{1}{3 \times (-1) - 4 \times (-1)}$$

$$\Rightarrow \frac{x}{8 - 3} = \frac{y}{-12 + 24} = \frac{1}{-3 + 4}$$

$$\Rightarrow \frac{x}{8 - 3} = \frac{y}{-12 + 24} = \frac{1}{-3 + 4}$$

$$\Rightarrow \frac{x}{8 - 3} = \frac{y}{-12 + 24} = \frac{1}{-3 + 4}$$

$$\Rightarrow \frac{x}{5} = \frac{y}{12} = \frac{1}{1}$$

$$\Rightarrow x = 5$$
 and $y = 12$

Hence, the required fraction $=\frac{x}{y}=\frac{5}{12}$.

(iii) Let the number of right answers = x

Let the number of wrong answers = y

According to first condition,

$$3x - y = 40$$

$$\Rightarrow 3x - y - 40 = 0$$

According to second condition,

$$4x - 2y = 50$$

$$\Rightarrow$$
 4 x - 2 y - 50 = 0

By cross-multiplication method,

$$\frac{x}{(-1) \times (-50) - (-2) \times (-40)} = \frac{y}{(-40) \times 4 - (-50) \times 3} = \frac{1}{3 \times (-2) - 4 \times (-1)}$$

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

$$\Rightarrow \frac{x}{50 - 80} = \frac{y}{-160 + 150} = \frac{1}{-6 + 4} \Rightarrow \frac{x}{-30} = \frac{y}{-10} = \frac{1}{-2}$$

$$\Rightarrow x = 15 \text{ and } y = 5$$

Hence, the total number of questions = x + y = 15 + 5 = 20.

(iv) Let the speed of car from station A = x km/h

Let the speed of car from station B = y km/h

After 5 hours,

Distance travelled by car A = 5x km

Distance travelled by car B = 5y km

So,
$$5x - 5y = 100$$

$$\Rightarrow x - y - 20 = 0$$

After 1 hour,

Distance travelled by car A = x km

Distance travelled by car B = y km

So,
$$x + y = 100$$

$$\Rightarrow x + y - 100 = 0$$

By cross-multiplication method,

$$\frac{x}{(-1) \times (-100) - 1 \times (-20)} = \frac{A \cdot C \cdot A \cdot D \cdot y \cdot M \cdot Y}{(-20) \times 1 - (-100) \times 1} = \frac{1}{1 \times 1 - 1 \times (-1)}$$

$$\Rightarrow \frac{x}{100 + 20} = \frac{y}{-20 + 100} = \frac{1}{1 + 1}$$

$$\Rightarrow \frac{x}{120} = \frac{y}{80} = \frac{1}{2}$$

$$\Rightarrow x = 60$$
 and $y = 40$

Hence, the speed of car from A is 60 km/h and the speed of car form B is 40 km/h.

(v) Let the length = x units

Let the breadth = y units

Therefore, the area = xy square units

If its length is reduced by 5 units and breadth is increased by 3 units, then

Area = (x - 5)(y + 3) Square units

According to question,

$$(x-5)(y+3) = xy-9$$

$$\Rightarrow xy + 3x - 5y - 15 = xy - 9$$

\Rightarrow 3x - 5y - 6 = 0 \tdox...(1)

www.tiwariacademy.in

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Therefore,

$$(x+3)(y+2) = xy + 67$$

 $\Rightarrow xy + 2x + 3y + 6 = xy + 67$
 $\Rightarrow 2x + 3y - 61 = 0$... (2)

By cross-multiplication method,

$$\frac{x}{(-5) \times (-61) - 3 \times (-6)} = \frac{y}{(-6) \times 2 - (-61) \times 3} = \frac{1}{3 \times 3 - 2 \times (-5)}$$

$$\Rightarrow \frac{x}{305 + 18} = \frac{y}{-12 + 183} = \frac{1}{9 + 10}$$

$$\Rightarrow \frac{x}{323} = \frac{y}{171} = \frac{1}{19}$$

$$\Rightarrow x = 17$$
 and $y = 9$

Hence, the length of rectangle is 17 units and the breadth is 9 units.

www.tiwariacademy.in