(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Exercise 3.4

Question 1:

Solve the following pair of linear equations by the elimination method and the substitution method:

(i)
$$x + y = 5$$
 and $2x - 3y = 4$

(ii)
$$3x + 4y = 10$$
 and $2x - 2y = 2$

(iii)
$$3x - 5y - 4 = 0$$
 and $9x = 2y + 7$

(iv)
$$\frac{x}{2} + \frac{2y}{3} = -1$$
 and $x - \frac{y}{3} = 3$

Answer 1:

(i)
$$x + y = 5$$

$$2x - 3y = 4$$

Multiply equation (1) by 2 and subtracting from equation (2), we get

$$2x - 3y = 4$$

$$2x + 2y = 10$$

$$-5y = -6$$

$$\Rightarrow y = \frac{6}{5}$$

Putting the value of y in equation (1), we get

$$x + \frac{6}{5} = 5$$
 $\Rightarrow x = 5 - \frac{6}{5} = \frac{19}{5}$ $\Rightarrow x = \frac{19}{5}$

Hence,
$$x = \frac{19}{5}$$
 and $y = \frac{6}{5}$.

(ii)
$$3x + 4y = 10$$

$$2x - 2y = 2$$

Multiply equation (2) by 2 and adding with equation (1), we get

$$3x + 4y = 10$$
$$4x - 4y = 4$$

$$\frac{-4y-4}{7x=14}$$

$$\Rightarrow x = \frac{14}{7} = 2$$

Putting the value of x in equation (1), we get

$$3(2) + 4y = 10 \quad \Rightarrow 4y = 4 \quad \Rightarrow y = 1$$

Hence,
$$x = 2$$
 and $y = 1$.

(iii)
$$3x - 5y - 4 = 0$$

$$9x - 2y = 7$$

Multiply equation (1) by 3 and subtracting from equation (2), we get

$$9x - 2y = 7$$

$$9x - 15y = 12$$

$$- + -$$

$$13y = -5$$

$$\Rightarrow y = -\frac{5}{13}$$

Putting the value of
$$y$$
 in equation (2), we get $9x - 2\left(-\frac{5}{13}\right) = 7 \implies 9x = 7 - \frac{10}{13} = \frac{81}{13} \implies x = \frac{9}{13}$

Hence,
$$x = \frac{9}{13}$$
 and $y = -\frac{5}{13}$.
(iv) $\frac{x}{2} + \frac{2y}{3} = -1$

(iv)
$$\frac{x}{2} + \frac{2y}{3} = -1$$

$$\Rightarrow 3x + 4y = -6$$

$$3x + 4y = -6 \qquad ... (1)$$
and $x - \frac{y}{3} = 3 \Rightarrow 3x - y = 9 \qquad ... (2)$

www.tiwariacademy.in

A Free web support in Education

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Subtracting equation (1) from equation (2), we get

$$3x + 4y = -6$$

$$3x - y = 9$$

$$- + -$$

$$5y = -15$$

$$\Rightarrow y = -3$$

Putting the value of y in equation (1), we get

3x + 4(-3) = -6 $\Rightarrow 3x = 6$ $\Rightarrow x = 2$ Hence, x = 2 and y = -3.

Question 2:

Form the pair of linear equations in the following problems, and find their solutions (if they exist) by the elimination method:

- (i) If we add 1 to the numerator and subtract 1 from the denominator, a fraction reduces to 1. It becomes $\frac{1}{2}$ if we only add 1 to the denominator. What is the fraction?
- (ii) Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
- (iii) The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.
- (iv) Meena went to a bank to withdraw ₹2000. She asked the cashier to give her ₹50 and ₹100 notes only. Meena got 25 notes in all. Find how many notes of ₹50 and ₹100 she received.
- (v) A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid ₹27 for a book kept for seven days, while Susy paid ₹21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

Answer 2:

(i) Let the numerator = xLet the denominator = y

Therefore, the fraction = $\frac{x}{y}$

According to first condition,

$$\frac{x+1}{y-1} = 1 \implies x+1 = y-1$$

$$\Rightarrow x - y = -2 \qquad \dots (1)$$

According to second condition,

$$\frac{x}{y+1} = \frac{1}{2}$$

$$\Rightarrow 2x = y + 1$$

$$\Rightarrow 2x - y = 1$$

Multiply equation (1) by 2 and subtracting from equation (2), we get

$$2x - y = 1$$

$$2x - 2y = -4$$

$$- + +$$

$$y = 5$$

Putting the value of y in equation (1), we get

$$x - 5 = -2 \Rightarrow x = 3$$

Hence, the fraction =
$$\frac{x}{y} = \frac{3}{5}$$
.

www.tiwariacademy.in

A Free web support in Education

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables) (Class 10)

(ii) Let the age of Nuri = x years

Let the age of Sonu = y years

5 years ago, age of Nuri = x - 5 years and age of Sonu = y - 5 years

According to question,

$$x - 5 = 3(y - 5)$$
 $\Rightarrow x - 5 = 3y - 15$
 $\Rightarrow x - 3y = -10$... (1)

After 10 years,

Age of Nuri = x + 10 years

Age of Sonu = y + 10 years

According to question,

$$x + 10 = 2(y + 10)$$
 $\Rightarrow x + 10 = 2y + 20$
 $\Rightarrow x - 2y = 10$... (2)

Subtracting equation (2) from equation (1), we get

$$x - 3y = -10$$

$$x - 2y = 10$$

$$- + -$$

$$-y = -20$$

$$\Rightarrow y = 20$$

Putting the value of y in equation (1), we get

$$x - 3(20) = -10 \Rightarrow x = 50$$

Hence, age of Nuri is 50 years age of Sonu is 20 years.

(iii) Let the one's place = x and let the ten's place = y

Therefore, the number = 10y + x

Some of digits is 9, therefore

$$x + y = 9$$
 ... (1)

Number obtained by reversing the digits = 10x + y

According to question,

$$9(10y + x) = 2(10x + y)$$
 $\Rightarrow 90y + 9x = 20x + 2y$ $\Rightarrow 11x - 88y = 0$
 $\Rightarrow x - 8y = 0$... (2)

Subtracting equation (2) from equation (1), we get

$$x + y = 9$$

$$x - 8y = 0$$

$$- + -$$

$$9y = 9$$

$$\Rightarrow y = 1$$

Putting the value of y in equation (1), we get

$$x + 1 = 9 \Rightarrow x = 8$$

Therefore, the number = 10y + x = 10(1) + 8 = 18

Hence, the two digit number is 18.

(iv) Let the number of notes of ₹50 = x

Let the number of notes of $\stackrel{?}{=}100 = y$

Total number of notes is 25, therefore

$$x + y = 25$$
 ... (1)

The total amount of ₹50 and ₹100 is ₹2000, therefore

$$50x + 100y = 2000$$

$$\Rightarrow x + 2y = 40 \qquad \dots (2)$$

www.tiwariacademy.in

A Free web support in Education

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Subtracting equation (2) from equation (1), we get

$$x + y = 25$$

$$x + 2y = 40$$

$$- - -$$

$$-y = -15$$

$$\Rightarrow y = 15$$

Putting the value of y in equation (1), we get

$$x + 15 = 25$$
 $\Rightarrow x = 10$

Hence, the number of ₹50 notes is 10 and the number of ₹100 is 15.

(v) Let the charge for first three days = $\forall x$

Let the additional charge for each day = $\forall y$

Charge for seven days is ₹27, therefore

$$x + 4y = 27$$

... (1)

Charge for 5 days is ₹21, therefore

$$x + 2y = 21$$

... (2)

Subtracting equation (2) from equation (1), we get

$$x + 4y = 27$$

$$x + 2y = 21$$

$$- - -$$

$$2y = 6$$

$$\Rightarrow y = 3$$

Putting the value of y in equation (1), we get

$$x + 4(3) = 27$$
 $\Rightarrow x = 15$

Hence, the fixed charge is ₹15 and the additional charge for each day is ₹3.

