Mathematics

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10) Exercise 3.1

Question 1:

Aftab tells his daughter, "Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be." (Isn't this interesting?) Represent this situation algebraically and graphically.

Answer 1:

Let Aftab's age be x years

Let, daughter's age be y years

Seven years ago,

Aftab's age = x - 7 years

Daughter's age = y - 7 years

According to question,

$$x - 7 = 7(y - 7)$$
 $\Rightarrow x - 7 = 7y - 49$ $\Rightarrow x - 7y = -42$... (1)

After 3 years,

Aftab's age = x + 3 years

Daughter's age = y + 3 years

According to question,

$$x + 3 = 3(y + 3)$$
 $\Rightarrow x + 3 = 3y + 9$ $\Rightarrow x - 3y = 6$... (2)

Hence, the following is the algebraic representation of the situation:

$$7x - y = 42$$

$$3x - y = -6$$

Now, for graphical representation, the three solutions of each equations are as follows:

From equation (1), we get

$$x = 7y - 42$$

x - 7y - 42				
x	-7	0	7	
ν	5	6	7	

From the equation (2), we get

$$x = 3v + 6$$

x	6	3	0
y	0	-1	-2

Question 2:

The coach of a cricket team buys 3 bats and 6 balls for ₹ 3900. Later, she buys another bat and 2 more balls of the same kind for ₹ 1300. Represent this situation algebraically and geometrically.

Answer 2:

Let the cost of one bat = x

Let the cost of one ball = 7 7

According to first condition,

$$3x + 6y = 3900$$

According to second condition,

$$x + 2y = 1300$$
 ... (2)

Hence, the following is the algebraic representation of the situation:

... (1)

$$3x + 6y = 3900$$

$$x + 2y = 1300$$

www.tiwariacademy.in

A Free web support in Education

Mathematics

(www.tiwariacademy.in)

(Chapter 3) (Pair of Linear Equations in two variables)

(Class 10)

Now, for graphical representation, the three solutions of each equations are as follows:

From the equation (1), we get

$$x = \frac{3900 - 6y}{3}$$

x	300	100	-100
у	500	600	700

From the equation (2), we get

$$x = 1300 - 2y$$

x	300	100	-100
v	500	600	700

Question 3:

The cost of 2 kg of apples and 1kg of grapes on a day was found to be $\stackrel{?}{\sim}$ 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is $\stackrel{?}{\sim}$ 300. Represent the situation algebraically and geometrically.

Answer 3:

Let the cost of 1 kg of grapes = $\forall y$

According to first condition,

$$2x + y = 160$$

According to second condition,

$$4x + 2y = 300$$

Hence, the following is the algebraic representation of the situation:

$$2x + y = 160$$

$$4x + 2y = 300$$

Now, for graphical representation, the three solutions of each equations are as follows:

From the equation (1), we get

$$y = 160 - 2x$$

x	50	60	70
у	60	40	20

From the equation (2), we get

$$v = \frac{300 - 4x}{}$$

		Z	
x	70	80	75
y	10	-10	0

www.tiwariacademy.in

A Free web support in Education