(www.tiwariacademy.in) (Chapter - 14) (Statistics) (Class - 10)

### Exercise 14.2

### Question 1:

The following table shows the ages of the patients admitted in a hospital during a year:

| age (in years)     | 5 - 15 | 15 - 25 | 25 – 35 | 35 – 45 | 45 – 55 | 55 - 65 |
|--------------------|--------|---------|---------|---------|---------|---------|
| Number of patients | 6      | 11      | 21      | 23      | 14      | 5       |

Find the mode and the mean of the data given above. Compare and interpret the two measures of central tendency.

### Answer 1:

To find the class marks  $(x_i)$ , the following relation is used.

$$x_i = \frac{Upper\ limit + Lower\ limit}{2}$$

| Age (in years) | Number of patients (fi) | Class mark (x <sub>i</sub> ) | $d_i = x_i - 30$ | fidi  |
|----------------|-------------------------|------------------------------|------------------|-------|
| 5 – 15         | 6                       | 10                           | - 20             | - 120 |
| 15 - 25        | 11                      | 20                           | - 10             | - 110 |
| 25 - 35        | 21                      | 30                           | 0                | 0     |
| 35 - 45        | 23                      | 40                           | 10               | 230   |
| 45 - 55        | 14                      | 50                           | 20               | 280   |
| 55 - 65        | 5                       | 60                           | 30               | 150   |
| Total          | 80                      |                              |                  | 430   |

From the table, we obtain

$$\sum f_i = 80$$
,  $\sum f_i d_i = 430$  and  $a = 30$ 

mean 
$$(\bar{x}) = a + \frac{\sum f_i d_i}{\sum f_i} = 30 + \left(\frac{430}{80}\right) = 30 + 5.375 = 35.375 = 35.38$$

Mean of this data is 35.38. It represents that on an average, the age of a patient admitted to hospital was 35.38 years. It can be observed that the maximum class frequency is 23 belonging to class interval 35 - 45.

Modal class = 35 - 45

Lower limit (I) of modal class = 35

Frequency  $(f_1)$  of modal class = 23

Class size (h) = 10

Frequency ( $f_0$ ) of class preceding the modal class = 21

Frequency  $(f_2)$  of class succeeding the modal class = 14

$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$
 of class succeeding the modal class = 14 A C A D E M Y
$$V(f_2)$$

Mode is 36.8. It represents that the age of maximum number of patients admitted in hospital was 36.8 years.

#### Question 2:

| The following data gives the | : IIIIOI IIIatioii oii i | ille observed i | medines (in no | urs) or 223 er | ectifical compon | ents.     |
|------------------------------|--------------------------|-----------------|----------------|----------------|------------------|-----------|
| Lifetimes (in hours)         | 0 - 20                   | 20 - 40         | 40 - 60        | 60 - 80        | 80 - 100         | 100 - 120 |
| Frequency                    | 10                       | 35              | 52             | 61             | 38               | 29        |

Determine the modal lifetimes of the components.

#### Answer 2:

From the data given above, it can be observed that the maximum class frequency is 61, belonging to class interval 60 - 80.

Therefore, modal class = 60 - 80

Lower class limit (I) of modal class = 60

Frequency  $(f_1)$  of modal class = 61

Frequency ( $f_0$ ) of class preceding the modal class = 52

Frequency  $(f_2)$  of class succeeding the modal class = 38

Class size (h) = 20

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 60 + \left(\frac{61 - 52}{2 \times 61 - 52 - 38}\right) \times 20 = 60 + \frac{9}{32} \times 20 = 60 + 5.625 = 65.625$$

Therefore, modal lifetime of electrical components is 65.625 hours.

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 14) (Statistics) (Class - 10)

### Question 3:

The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.

| Expenditure (in ₹) | Number of families |
|--------------------|--------------------|
| 1000 – 1500        | 24                 |
| 1500 – 2000        | 40                 |
| 2000 – 2500        | 33                 |
| 2500 – 3000        | 28                 |
| 3000 – 3500        | 30                 |
| 3500 - 4000        | 22                 |
| 4000 – 4500        | 16                 |
| 4500 – 5000        | 7                  |

### Answer 3:

It can be observed from the given data that the maximum class frequency is 40, belonging to 1500 – 2000 intervals.

Therefore, modal class = 1500 - 2000

Lower limit (I) of modal class = 1500

Frequency  $(f_1)$  of modal class = 40

Frequency  $(f_0)$  of class preceding modal class = 24

Frequency  $(f_2)$  of class succeeding modal class = 33

Class size (h) = 500

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 1500 + \left(\frac{40 - 24}{2 \times 40 - 24 - 33}\right) \times 500 = 1500 + \frac{16}{23} \times 500 = 1500 + 347.826 = 1847.83$$

Therefore, modal monthly expenditure was ₹1847.83.

To find the class mark, the following relation is used.

$$x_i = \frac{Upper\ limit + Lower\ limit}{2}$$

Class size (h) of the given data = 500.

Taking 2750 as assumed mean (a),  $d_i$ ,  $u_i$ , and  $f_iu_i$  are calculated as follows.

| Expenditure (in ₹) | Number of families $f_i$ | Xi   | $d_i = x_i - 2750$ | $u_i = \frac{di}{500}$ | fiui |
|--------------------|--------------------------|------|--------------------|------------------------|------|
| 1000 - 1500        | 24                       | 1250 | - 1500             | - 3                    | - 72 |
| 1500 – 2000        | 40                       | 1750 | - 1000             | - 2                    | -80  |
| 2000 - 2500        | 33                       | 2250 | - 500              | -1                     | -33  |
| 2500 - 3000        | 28                       | 2750 | 0                  | 0                      | 0    |
| 3000 - 3500        | 30                       | 3250 | 500                | 1                      | 30   |
| 3500 - 4000        | 22                       | 3750 | 1000               | 2                      | 44   |
| 4000 - 4500        | 16                       | 4250 | 1500               | 3                      | 48   |
| 4500 - 5000        | 7                        | 4750 | 2000               | 4                      | 28   |
| Total              | 200                      |      |                    |                        | -35  |

From the table, we obtain

$$\sum f_i = 200, \sum f_i u_i = -35, a = 2750 \text{ and } h = 500$$

$$\operatorname{mean}(\bar{x}) = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) h = 2750 + \left(\frac{-35}{200}\right) \times 500 = 2750 - 87.5 = 2662.50$$

Therefore, mean monthly expenditure was ₹ 2662.50.

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 14) (Statistics) (Class - 10)

### Question 4:

The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.

| Number of students per teacher | Number of states/U.T |
|--------------------------------|----------------------|
| 15 – 20                        | 3                    |
| 20 – 25                        | 8                    |
| 25 – 30                        | 9                    |
| 30 – 35                        | 10                   |
| 35 - 40                        | 3                    |
| 40 – 45                        | 0                    |
| 45 – 50                        | 0                    |
| 50 – 55                        | 2                    |

### Answer 4:

It can be observed from the given data that the maximum class frequency is 10 belonging to class interval 30 – 35.

Therefore, modal class = 30 - 35

Class size (h) = 5

Lower limit (I) of modal class = 30

Frequency  $(f_1)$  of modal class = 10

Frequency  $(f_0)$  of class preceding modal class = 9

Frequency  $(f_2)$  of class succeeding modal class = 3

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 30 + \left(\frac{10 - 9}{2 \times 10 - 9 - 3}\right) \times 5 = 30 + \frac{1}{8} \times 5 = 30 + 0.625 = 30.625$$

It represents that most of the states/U.T have a teacher-student ratio as 30.6.

To find the class marks, the following relation is used.

$$x_l = \frac{Upper\ limit + Lower\ limit}{2}$$

Taking 32.5 as assumed mean (a),  $d_i$ ,  $u_i$ , and  $f_iu_i$  are calculated as follows.

| Number of students per teacher | Number of states/U.T | E MY | $d_i = x_i - 32.5$ | $u_i = \frac{di}{5}$ | fiui |
|--------------------------------|----------------------|------|--------------------|----------------------|------|
| 15 – 20                        | 3                    | 17.5 | - 15               | - 3                  | - 9  |
| 20 - 25                        | 8                    | 22.5 | - 10               | - 2                  | -16  |
| 25 - 30                        | 9                    | 27.5 | - 5                | - 1                  | - 9  |
| 30 - 35                        | 10                   | 32.5 | 0                  | 0                    | 0    |
| 35 - 40                        | 3                    | 37.5 | 5                  | 1                    | 3    |
| 40 - 45                        | 0                    | 42.5 | 10                 | 2                    | 0    |
| 45 – 50                        | 0                    | 47.5 | 15                 | 3                    | 0    |
| 50 – 55                        | 2                    | 52.5 | 20                 | 4                    | 8    |
| Total                          | 35                   |      |                    |                      | -23  |

From the table, we obtain

$$\sum f_i = 35, \sum f_i u_i = -23, a = 32.5 \text{ and } h = 5$$

$$\text{mean } (\bar{x}) = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) h = 32.5 + \left(\frac{-23}{35}\right) \times 5 = 32.5 - \frac{23}{7} = 32.5 - 3.28 = 29.22$$

Therefore, mean of the data is 29.2.

It represents that on an average, teacher-student ratio was 29.2.

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 14) (Statistics) (Class - 10)

### Question 5:

The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

| Runs scored   | Number of batsmen |
|---------------|-------------------|
| 3000 - 4000   | 4                 |
| 4000 – 5000   | 18                |
| 5000 – 6000   | 9                 |
| 6000 – 7000   | 7                 |
| 7000 – 8000   | 6                 |
| 8000 – 9000   | 3                 |
| 9000 – 10000  | 1                 |
| 10000 - 11000 | 1                 |

Find the mode of the data.

### Answer 5:

From the given data, it can be observed that the maximum class frequency is 18, belonging to class interval 4000 – 5000.

Therefore, modal class = 4000 - 5000

Lower limit (I) of modal class = 4000

Frequency (f1) of modal class = 18

Frequency (f0) of class preceding modal class = 4

Frequency (f2) of class succeeding modal class = 9

Class size (h) = 1000

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 4000 + \left(\frac{18 - 4}{2 \times 18 - 4 - 9}\right) \times 1000 = 4000 + 608.695 = 4608.695$$

Therefore, mode of the given data is 4608.7 runs

#### **Ouestion 6:**

A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:

| Number of cars | 0 - 10 | 10 - 20 | 20 - 30           | 30 - 40 | 40 - 50 | 50 - 60 | 60 – 70 | 70 – 80 |
|----------------|--------|---------|-------------------|---------|---------|---------|---------|---------|
| Frequency      | 7      | 14      | 13 <sup>A</sup> C | 12      | 20      | 11      | 15      | 8       |

### Answer 6:

From the given data, it can be observed that the maximum class frequency is 20, belonging to 40 – 50 class intervals.

Therefore, modal class = 40 - 50

Lower limit (I) of modal class = 40

Frequency  $(f_1)$  of modal class = 20

Frequency  $(f_0)$  of class preceding modal class = 12

Frequency  $(f_2)$  of class succeeding modal class = 11

Class size = 10

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h = 40 + \left(\frac{20 - 12}{2 \times 20 - 12 - 11}\right) \times 10 = 40 + \frac{8}{17} \times 10 = 40 + 4.7 = 44.7$$

Therefore, mode of this data is 44.7 cars.

www.tiwariacademy.in