Mathematics

(www.tiwariacademy.in) (Chapter – 13) (Surface Areas and Volumes) (Class 10)

Exercise 13.4

Question 1:

A drinking glass is in the shape of a frustum of a cone of height 14 cm. The diameters of its two circular ends are 4 cm and 2 cm. Find the capacity of the glass.

Answer 1:

Radius of upper part of glass $(r_1) = 4/2 = 2$ cm Radius of lower part of glass $(r_2) = 2/2 = 1$ cm

Height = 14 cm

Capacity of glass = Volume of frustum

$$= \frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1 r_2) = \frac{1}{3}\pi h(2^2 + 1^2 + 2 \times 1) = \frac{1}{3} \times \frac{22}{7} \times 14 \times (7)$$

$$= \frac{1}{3} \times 22 \times 14 = \frac{308}{3} = 102\frac{2}{3} \ cm^3$$

Hence, the capacity of glass is $102\frac{2}{3}$ cm^3 .

Question 2:

The slant height of a frustum of a cone is 4 cm and the perimeters (circumference) of its circular ends are 18 cm and 6 cm. Find the curved surface area of the frustum.

Answer 2:

Circumference of upper part of frustum = 18 cm

$$\Rightarrow 2\pi r_1 = 18 \qquad \Rightarrow r_1 = \frac{9}{\pi}$$

Circumference of lower part of frustum = 6 cm

$$\Rightarrow 2\pi r_2 = 6 \qquad \Rightarrow r_2 = \frac{3}{\pi}$$

Height of frustum = 4 cm

Curved surface area of the frustum = $\pi (r_1 + r_2) l$

$$=\pi\left(\frac{9}{\pi}+\frac{3}{\pi}\right)4 = 12 \times 4 = 48 \ cm^2$$

Hence, the curved surface area of the frustum is 48 cm².

Question 3:

A *fez*, the cap used by the Turks, is shaped like the frustum of a cone (see Figure). If its radius on the open side is 10 cm, radius at the upper base is 4 cm and its slant height is 15 cm, find the area of material used for making it.

15 cm

Answer 3:

Radius of lower part of cap $(r_1) = 10$ cm

Radius of upper part of cap $(r_2) = 4$ cm

Slant height of cap = 15 cm

Area of material used for making it = CSA of frustum + Area of upper part

$$=\pi(r_1+r_2)l+\pi r_2$$

$$=\pi(10+4)\times15+\pi\times4^2$$

$$=210\pi + 16\pi = 226\pi$$

$$=226\times\frac{22}{7}=710\frac{2}{7}\ cm^2$$

Hence, the area of material used for making is $710\frac{2}{7}$ cm².

www.tiwariacademy.in

A Free web support in Education

Mathematics

(www.tiwariacademy.in) (Chapter – 13) (Surface Areas and Volumes) (Class 10)

Question 4:

A container, opened from the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm, respectively. Find the cost of the milk which can completely fill the container, at the rate of ₹ 20 per litre. Also find the cost of metal sheet used to make the container, if it costs ₹ 8 per 100 cm². (Take π = 3.14)

Answer 4:

Radius of upper part of container $(r_1) = 20$ cm Radius of lower part of container $(r_2) = 8$ cm

Height of container (h) = 16 cm

Slant height of container = $\sqrt{(r_1 - r_2)^2 + h^2}$

$$= \sqrt{(20-8)^2 + 16^2} = \sqrt{144 + 256} = \sqrt{400} = 20 \text{ cm}$$

Capacity of container = Volume of frustum = $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$

$$= \frac{1}{3} \times 3.14 \times 16 \times (20^2 + 8^2 + 20 \times 8) = \frac{1}{3} \times 3.14 \times 16 \times (400 + 64 + 160)$$

$$= \frac{1}{3} \times 3.14 \times 16 \times 624 = 104449.92 \ cm^3 = 10.45 \ litres.$$

Cost of 1 litre of milk = ₹ 20

Therefore, the cost of 10.45 litres of milk = 10.45 × ₹ 20 = ₹ 209

The area of metal sheet used to make the container

$$= \pi (r_1 + r_2) l + \pi (r_2)^2$$

$$=\pi (20 + 8) 20 + \pi (8)^2$$

$$= 560 \pi + 64 \pi = 624 \pi \text{ cm}^2$$

Cost of 100 cm² metal sheet = ₹8

Cost of 1 cm² metal sheet = $\frac{8}{100}$

Therefore, the cost of 624 π cm² metal sheet = $\frac{8}{100} \times 624 \pi = \frac{8}{100} \times 624 \times 3.14 = \frac{156.75}{100}$

Hence, the cost of the milk which can completely fill the container is $\stackrel{?}{\underset{?}{?}}$ 209 and the cost of metal sheet used to make the container is $\stackrel{?}{\underset{?}{?}}$ 156.75.

Question 5:

A metallic right circular cone 20 cm high and whose vertical angle is 60° is cut into two parts at the middle of its height by a plane parallel to its base. If the frustum so obtained be drawn into a wire of diameter $\frac{1}{16}$ cm find the length of the wire.

Answer 5:

In ΔAEG,

$$\frac{EG}{AG} = \tan 30^{\circ}$$

$$\Rightarrow \frac{EG}{10} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow EG = \frac{10}{\sqrt{3}}$$

In ΔABD,

$$\frac{BD}{AD} = \tan 30^{\circ}$$

$$\Rightarrow \frac{BD}{20} = \frac{1}{\sqrt{3}}$$

www.tiwariacademy.in

A Free web support in Education

Mathematics

(www.tiwariacademy.in)
(Chapter – 13) (Surface Areas and Volumes)
(Class 10)

$$\Rightarrow BD = \frac{20}{\sqrt{3}}$$

Radius of upper part of frustum $(r_1) = \frac{10}{\sqrt{3}}$

Radius of lower part of frustum $(r_2) = \frac{20}{\sqrt{3}}$

Height of frustum (h) = 10 cm

Volume of frustum = $\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$

$$= \frac{1}{3}\pi \times 10 \times \left[\left(\frac{10}{\sqrt{3}} \right)^2 + \left(\frac{20}{\sqrt{3}} \right)^2 + \frac{10}{\sqrt{3}} \times \frac{20}{\sqrt{3}} \right]$$

$$= \frac{1}{3} \times \frac{22}{7} \times 10 \times \left(\frac{100}{3} + \frac{400}{3} + \frac{200}{3}\right)$$

$$= \frac{1}{3} \times \frac{22}{7} \times 10 \times \left(\frac{700}{3}\right) = \frac{22000}{9} \ cm^3$$

Radius of wire (r) = $\frac{1}{2} \times \frac{1}{16} = \frac{1}{32} cm$

Let the length of wire = l

Volume of wire = area of cross-section of wire × length of wire

$$=(\pi r^2)(l)$$

$$=\pi\left(\frac{1}{32}\right)^2\times l$$

Volume of frustum = volume of wire

$$\Rightarrow \frac{22000}{9} = \pi \left(\frac{1}{32}\right)^2 \times l$$

$$\Rightarrow \frac{22000}{9} = \frac{22}{7} \times \frac{1}{1024} \times l$$

$$\Rightarrow l = \frac{22000}{9} \times \frac{7}{22} \times 1024$$

$$= 796444.44 cm$$

$$= 7964.44 m$$

Hence, the length of wire is 7964.44 m.

IWARI A C A D E M Y

3