(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

Exercise 11.1

Question 1:

Draw a line segment of length 7.6 cm and divide it in the ratio 5:8. Measure the two parts. Give the justification of the construction.

Answer 1:

A line segment of length 7.6 cm can be divided in the ratio of 5:8 as follows.

Step 1 Draw line segment AB of 7.6 cm and draw a ray AX making an acute angle with line segment AB.

Step 2 Locate 13 (= 5 + 8) points, A_1 , A_2 , A_3 , A_4 A_{13} , on AX such that $AA_1 = A_1A_2 = A_2A_3$ and so on.

Step 3 Join BA₁₃.

Step 4 Through the point A_5 , draw a line parallel to BA_{13} (by making an angle equal to $\angle AA_{13}B$) at A_5 intersecting AB at point C.

C is the point dividing line segment AB of 7.6 cm in the required ratio of 5:8.

The lengths of AC and CB can be measured. It comes out to 2.9 cm and 4.7 cm respectively.

Justification

The construction can be justified by proving that $\frac{AC}{CB} = \frac{5}{8}$

By construction, we have $A_5C \mid\mid A_{13}B.$ By applying Basic proportionality theorem for the triangle $AA_{13}B$, we obtain

$$\frac{AC}{CB} = \frac{AA_5}{A_5A_{13}} \qquad ... (1) \quad \text{IWARI}$$

From the figure, it can be observed that AA_5 and A_5A_{13} contain 5 and 8 equal divisions of line segments respectively.

$$\frac{AA_5}{A_5A_{13}} = \frac{5}{8} \qquad ... (2)$$

On comparing equations (1) and (2), we obtain $\frac{AC}{CB} = \frac{5}{8}$

This justifies the construction.

Question 2:

Construct a triangle of sides 4 cm, 5cm and 6cm and then a triangle similar to it whose sides are 2/3of the corresponding sides of the first triangle.

Give the justification of the construction.

Answer 2:

Step 1

Draw a line segment AB = 4 cm. Taking point A as centre, draw an arc of 5 cm radius. Similarly, taking point B as its centre, draw an arc of 6 cm radius. These arcs will intersect each other at point C. Now, AC = 5 cm and BC = 6 cm and Δ ABC is the required triangle.

(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

6 cm

5 cm

Step 2

Draw a ray AX making an acute angle with line AB on the opposite side of vertex C.

Step 3

Locate 3 points A_1 , A_2 , A_3 (as 3 is greater between 2 and 3) on line AX such that $AA_1 = A_1A_2 = A_2A_3$.

Step 4

Join BA_3 and draw a line through A_2 parallel to BA_3 to intersect AB at point B'.

Step 5

Draw a line through B' parallel to the line BC to intersect AC at C'.

 $\Delta AB'C'$ is the required triangle.

The construction can be justified by proving that

$$AB' = \frac{2}{3}AB, B'C' = \frac{2}{3}BC, AC' = \frac{2}{3}AC$$

By construction, we have B'C' || BC

 $\therefore \angle AB'C' = \angle ABC$ (Corresponding angles)

In $\triangle AB'C'$ and $\triangle ABC$,

 $\angle AB'C' = \angle ABC$ (Proved above)

 $\angle B'AC' = \angle BAC \text{ (Common)}$

 $\therefore \Delta AB'C' \sim \Delta ABC$ (AA similarity criterion)

$$\Rightarrow \frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC}$$

... (1)

In $\triangle AA_2B'$ and $\triangle AA_3B$,

 $\angle A_2AB' = \angle A_3AB$ (Common)

 $\angle AA_2B' = \angle AA_3B$ (Corresponding angles)

∴ $\Delta AA_2B' \sim \Delta AA_3B$ (AA similarity criterion)

$$\Rightarrow \frac{AB'}{AB} = \frac{AA_2}{AA_3}$$

$$\Rightarrow \frac{AB'}{AB} = \frac{2}{3}$$

... (2)

From equations (1) and (2), we obtain

$$\frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} = \frac{2}{3}$$

$$\Rightarrow AB' = \frac{2}{3}AB, B'C' = \frac{2}{3}BC, AC' = \frac{2}{3}AC$$

This justifies the construction.

(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

Question 3:

Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are 7/5 of the corresponding sides of the first triangle.

Give the justification of the construction.

Answer 3:

Step 1

Draw a line segment AB of 5 cm. Taking A and B as centre, draw arcs of 6 cm and 5 cm radius respectively. Let these arcs intersect each other at point C. \triangle ABC is the required triangle having length of sides as 5 cm, 6 cm, and 7 cm respectively.

Step 2

Draw a ray AX making acute angle with line AB on the opposite side of vertex C.

Step 3

Locate 7 points, A_1 , A_2 , A_3 , A_4 A_5 , A_6 , A_7 (as 7 is greater between 5 and 7), on line AX such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5 = A_5A_6 = A_6A_7$.

Step 4

Join BA_5 and draw a line through A_7 parallel to BA_5 to intersect extended line segment AB at point B'.

Step 5

Draw a line through B' parallel to BC intersecting the extended line segment AC at C'. $\triangle AB'C'$ is the required triangle.

Justification

The construction can be justified by proving that

$$AB' = \frac{7}{5}AB, B'C' = \frac{7}{5}BC, AC' = \frac{7}{5}AC$$

In ΔABC and ΔAB'C',

 \angle ABC = \angle AB'C' (Corresponding angles)

 $\angle BAC = \angle B'AC'$ (Common)

∴ ΔABC ~ ΔAB'C' (AA similarity criterion)

$$\Rightarrow \frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} \qquad \dots (1)$$

In $\triangle AA_5B$ and $\triangle AA_7B'$,

 $\angle A_5AB = \angle A_7AB'$ (Common)

 $\angle AA_5B = \angle AA_7B'$ (Corresponding angles)

∴ $\Delta AA_5B \sim \Delta AA_7B'$ (AA similarity criterion)

$$\Rightarrow \frac{AB'}{AB} = \frac{AA_5}{AA_7} \Rightarrow \frac{AB'}{AB} = \frac{5}{7} \qquad \dots (2)$$

On comparing equations (1) and (2), we obtain

(www.tiwariacademy.in)

(Chapter - 11) (Constructions) (Class - X)

$$\frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} = \frac{7}{5}$$

$$\Rightarrow AB' = \frac{7}{5}AB, B'C' = \frac{7}{5}BC, AC' = \frac{7}{5}AC$$

This justifies the construction.

Question 4:

Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose side are $1\frac{1}{2}$ times the corresponding sides of the isosceles triangle.

Give the justification of the construction.

Answer 4:

Let us assume that \triangle ABC is an isosceles triangle having CA and CB of equal lengths, base AB of 8 cm, and AD is the altitude of 4 cm.

A \triangle AB'C' whose sides are 3/2 times of \triangle ABC can be drawn as follows.

Step 1

Draw a line segment AB of 8 cm. Draw arcs of same radius on both sides of the line segment while taking point A and B as its centre.

Let these arcs intersect each other at 0 and 0'. Join 00'. Let 00' intersect AB at D.

Step 2

Taking D as centre, draw an arc of 4 cm radius which cuts the extended line segment OO' at point C. An isosceles $\triangle ABC$ is formed, having CD (altitude) as 4 cm and AB (base) as 8 cm.

Step 3

Draw a ray AX making an acute angle with line segment AB on the opposite side of vertex C.

Step 4

Locate 3 points (as 3 is greater between 3 and 2) A_1 , A_2 , and A_3 on AX such that $AA_1 = A_1A_2 = A_2A_3$.

Step 5

Join BA_2 and draw a line through A_3 parallel to BA_2 to intersect extended line segment AB at point B'.

Step 6

Draw a line through B' parallel to BC intersecting the extended line segment AC at C'. \triangle AB'C' is the required triangle.

Justification

The construction can be justified by proving that

(www.tiwariacademy.in)

(Chapter - 11) (Constructions)

$$AB' = \frac{3}{2}AB, B'C' = \frac{3}{2}BC, AC' = \frac{3}{2}AC$$

In $\triangle ABC$ and $\triangle AB'C'$,

 $\angle ABC = \angle AB'C'$ (Corresponding angles)

 $\angle BAC = \angle B'AC'$ (Common)

∴ ΔAB'C' ~ ΔABC (AA similarity criterion)

$$\Rightarrow \frac{AB'}{AB} = \frac{B'C'}{BC} = \frac{AC'}{AC} \qquad \dots (1)$$

In $\triangle AA_2B$ and $\triangle AA_3B'$,

 $\angle A_2AB = \angle A_3AB'$ (Common)

 $\angle AA_2B = \angle AA_3B'$ (Corresponding angles)

∴ $\triangle AA_2B \sim \triangle AA_3B'$ (AA similarity criterion)

$$\Rightarrow \frac{AB}{AB'} = \frac{AA_2}{AA_3} \Rightarrow \frac{AB}{AB'} = \frac{2}{3} \qquad \dots (2)$$

On comparing equations (1) and (2), we obtain

$$\frac{AB^{'}}{AB} = \frac{B^{'}C^{'}}{BC} = \frac{AC^{'}}{AC} = \frac{3}{2}$$

$$\Rightarrow AB^{'} = \frac{3}{2}AB, B^{'}C^{'} = \frac{3}{2}BC, AC^{'} = \frac{3}{2}AC$$

This justifies the construction.

Question 5:

Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and \angle ABC = 60°. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the triangle ABC. Give the justification of the construction.

Answer 5:

A $\Delta A'BC'$ whose sides are $^{3}\!\!/_{4}$ of the corresponding sides of ΔABC can be drawn as follows.

Step 1

Draw a \triangle ABC with side BC = 6 cm, AB = 5 cm and \triangle ABC = 60°.

Step 2

Draw a ray BX making an acute angle with BC on the opposite side of vertex A.

Step 3

Locate 4 points (as 4 is greater in 3 and 4), B_1 , B_2 , B_3 , B_4 , on line segment BX.

Step 4

Join B₄C and draw a line through B₃, parallel to B₄C intersecting BC at C'.

(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

Step 5

Draw a line through C' parallel to AC intersecting AB at A'. Δ A'BC' is the required triangle.

Justification

The construction can be justified by proving $A'B = \frac{3}{4}AB$, $BC' = \frac{3}{4}BC$, $A'C' = \frac{3}{4}AC$ In $\triangle A'BC'$ and $\triangle ABC$,

 $\angle A'C'B = \angle ACB$ (Corresponding angles)

 $\angle A'BC' = \angle ABC (Common)$

∴ ΔA'BC' ~ ΔABC (AA similarity criterion)

$$\Rightarrow \frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} \qquad \dots (1)$$

In $\triangle BB_3C'$ and $\triangle BB_4C$,

 $\angle B_3BC' = \angle B_4BC$ (Common)

 $\angle BB_3C' = \angle BB_4C$ (Corresponding angles)

∴ $\Delta BB_3C' \sim \Delta BB_4C$ (AA similarity criterion)

$$\Rightarrow \frac{BC'}{BC} = \frac{BB_3}{BB_4} \Rightarrow \frac{BC'}{BC} = \frac{3}{4} \qquad \dots (2)$$

From equations (1) and (2), we obtain

$$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$$

$$\Rightarrow A'B = \frac{3}{4}AB, BC' = \frac{3}{4}BC, A'C' = \frac{3}{4}AC$$
extruction

This justifies the construction.

Question 6:

Draw a triangle ABC with side BC = 7 cm, \angle B = 45°, \angle A = 105°. Then, construct a triangle whose sides are 4/3 times the corresponding side of \triangle ABC. Give the justification of the construction.

Answer 6:

$$\angle B = 45^{\circ}$$
, $\angle A = 105^{\circ}$

Sum of all interior angles in a triangle is 180°.

$$\angle A + \angle B + \angle C = 180^{\circ} \Rightarrow 105^{\circ} + 45^{\circ} + \angle C = 180^{\circ} \Rightarrow \angle C = 180^{\circ} - 150^{\circ} \Rightarrow \angle C = 30^{\circ}$$

The required triangle can be drawn as follows.

Step 1

Draw a \triangle ABC with side BC = 7 cm, \angle B = 45°, \angle C = 30°.

Step 2

Draw a ray BX making an acute angle with BC on the opposite side of vertex A. **Step 3**

Locate 4 points (as 4 is greater in 4 and 3), B₁, B₂, B₃, B₄, on BX.

(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

Step 4

Join B_3C . Draw a line through B_4 parallel to B_3C intersecting extended BC at C'.

Step 5

Through C', draw a line parallel to AC intersecting extended line segment at C'.

 Δ A'BC' is the required triangle.

Justification

The construction can be justified by proving that

$$A'B = \frac{4}{3}AB, BC' = \frac{4}{3}BC, AC' = \frac{4}{3}AC$$

In $\triangle ABC$ and $\triangle A'BC'$,

 $\angle ABC = \angle A'BC'$ (Common)

 \angle ACB = \angle A'C'B (Corresponding angles)

∴ ΔABC ~ ΔA'BC' (AA similarity criterion)

$$\Rightarrow \frac{AB}{A'B} = \frac{BC}{BC'} = \frac{AC}{A'C'} \qquad \dots (1)$$

In $\triangle BB_3C$ and $\triangle BB_4C'$,

 $\angle B_3BC = \angle B_4BC'$ (Common)

 $\angle BB_3C = \angle BB_4C'$ (Corresponding angles)

∴ $\Delta BB_3C \sim \Delta BB_4C'$ (AA similarity criterion)

$$\Rightarrow \frac{BC}{BC'} = \frac{BB_3}{BB_4} \Rightarrow \frac{BC}{BC'} = \frac{3}{4} \quad \dots (2)$$

On comparing equations (1) and (2), we obtain

$$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{AC'}{AC} = \frac{4}{3}$$

$$\Rightarrow A'B = \frac{4}{3}AB, BC' = \frac{4}{3}BC, AC' = \frac{4}{3}AC$$

This justifies the construction.

Question 7:

Draw a right triangle in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. the construct another triangle whose sides are 5/3 times the corresponding sides of the given triangle. Give the justification of the construction.

Answer 7:

It is given that sides other than hypotenuse are of lengths 4 cm and 3 cm. Clearly, these will be perpendicular to each other.

The required triangle can be drawn as follows.

Step 1

Draw a line segment AB = 4 cm. Draw a ray SA making 90° with it.

(www.tiwariacademy.in) (Chapter - 11) (Constructions) (Class - X)

Step 2

Draw an arc of 3 cm radius while taking A as its centre to intersect SA at C. Join BC. \triangle ABC is the required triangle.

Step 3

Draw a ray AX making an acute angle with AB, opposite to vertex C.

Step 4

Locate 5 points (as 5 is greater in 5 and 3), A_1 , A_2 , A_3 , A_4 , A_5 , on line segment AX such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$.

Step 5

Join A_3B . Draw a line through A_5 parallel to A_3B intersecting extended line segment AB at B'.

Step 6

Through B', draw a line parallel to BC intersecting extended line segment AC at C'. Δ AB'C' is the required triangle.

Justification

The construction can be justified by proving that

$$AB' = \frac{5}{3}AB, B'C' = \frac{5}{3}BC, AC' = \frac{5}{3}AC$$

In ΔABC and ΔAB'C',

∠ABC = ∠AB'C' (Corresponding angles)

 $\angle BAC = \angle B'AC'$ (Common)

 \therefore ΔABC ~ ΔAB'C' (AA similarity criterion)

$$\Rightarrow \frac{AB}{AB'} = \frac{BC}{B'C'} = \frac{AC}{AC'} \qquad \dots (1)$$

In $\triangle AA_3B$ and $\triangle AA_5B'$,

 $\angle A_3AB = \angle A_5AB'$ (Common)

 $\angle AA_3B = \angle AA_5B'$ (Corresponding angles)

∴ $\triangle AA_3B \sim \triangle AA_5B'$ (AA similarity criterion)

$$\Rightarrow \frac{AB}{AB'} = \frac{AA_3}{AA_5} \Rightarrow \frac{AB}{AB'} = \frac{3}{5} \quad \dots (2)$$

On comparing equations (1) and (2), we obtain

$$\frac{AB^{'}}{AB} = \frac{B^{'}C^{'}}{BC} = \frac{AC^{'}}{AC} = \frac{5}{3}$$

$$\Rightarrow AB^{'} = \frac{5}{3}AB, B^{'}C^{'} = \frac{5}{3}BC, AC^{'} = \frac{5}{3}AC$$

This justifies the construction.

