(www.tiwariacademy.in) (Chapter - 10) (Circles) (Class 10)

Exercise 10.2

In Q.1 to 3, choose the correct option and give justification.

Question 1:

From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is

(A) 7 cm

(B) 12 cm

(C) 15 cm

(D) 24.5 cm

Answer 1:

Let O be the centre of the circle.

Given: OQ = 25cm and PQ = 24 cm

We know that the radius is perpendicular to tangent. Therefore, OP \perp PQ In Δ OPQ, By Pythagoras theorem,

 $OP^2 + PQ^2 = OQ^2$

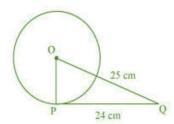
 \Rightarrow OP² + 24² = 25²

 \Rightarrow OP² = 625 - 576

 \Rightarrow OP² = 49

 \Rightarrow OP = 7

Therefore, the radius of circle is 7 cm. Hence, the option (A) is correct.



Question 2:

In Figure, if TP and TQ are the two tangents to a circle with centre 0 so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to

(A) 60°

 $(B) 70^{\circ}$

 $(C) 80^{\circ}$

(D) 90°

Answer 2:

Given: TQ and TP are two tangents of the circle.

We know that the radius is perpendicular to tangent. Therefore, OP \perp TP and OQ \perp TQ.

 \Rightarrow \angle OPT = 90° and \angle OQT = 90°

In quadrilateral POQT, \angle OPT + \angle POQ + \angle OQT + \angle PTQ = 360°

 $\Rightarrow 90^{\circ} + 110^{\circ} + 90^{\circ} + \angle PTO = 360^{\circ}$

 $\Rightarrow \angle PTQ = 360^{\circ} - 290^{\circ} = 70^{\circ}$

Hence, the option (B) is correct.

Question 3:

If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then ∠POA is equal to

(A) 50°

 $(B) 60^{\circ}$

 $(C) 70^{\circ}$

(D) 80°

Answer 3:

Given: PA and PB are two tangents of the circle.

We know that the radius is perpendicular to tangent. Therefore, $OA \perp PA$ and $OB \perp PB$.

 \Rightarrow \angle OBP = 90° and \angle OAP = 90°

In quadrilateral AOBP, \angle OAP + \angle APB + \angle PBO + \angle BOA = 360°

 $\Rightarrow 90^{\circ} + 80^{\circ} + 90^{\circ} + \angle BOA = 360^{\circ}$

 $\Rightarrow \angle BOA = 360^{\circ} - 260^{\circ} = 100^{\circ}$

In ΔOPB and ΔOPA,

AP = BP [Tangents drawn from same external point]

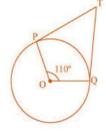
OA = OB [Radii] OP = OP [Common]

Therefore, $\triangle OPB \cong \triangle OPA$ [SSS Congruency rule]

Hence, $\angle POB = \angle POA$

 $\angle POA = \frac{1}{2} \angle AOB = \frac{1}{2} (100^{\circ}) = 50^{\circ}$. Hence, the option (A) is correct.

www.tiwariacademy.in



(www.tiwariacademy.in) (Chapter – 10) (Circles) (Class 10)

Question 4:

Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer 4:

Let AB is diameter, PQ and RS are tangents drawn at ends of diameter.

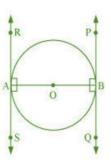
We know that the radius is perpendicular to tangent. Therefore, OA \perp RS and OB \perp PQ.

 \angle OAR = 90° and \angle OAS = 90° \angle OBP = 90° and \angle OBQ = 90°

From the above, we have

 \angle OAR = \angle OBQ [Alternate angles] \angle OAS = \angle OBP [Alternate angles]

Since, alternate angles are equal. Hence, PQ is parallel to PS.



Question 5:

Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer 5:

Let, O be the centre of circle and AB is a tangent at P.

We have to prove that the perpendicular at P to AB, passes through O.

Let the perpendicular drawn at P point of AB does not pass through O.

It passes through O'. Join OP and O'P.

Tangent drawn at P passes through O', therefore,

 $\angle 0'PB = 90^{\circ}$... (1

We know that the radius is perpendicular to tangent.

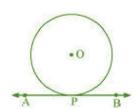
Therefore, $\angle OPB = 90^{\circ}$... (2)

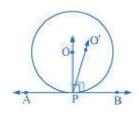
Comparing equation (1) and (2), we have

 $\angle O'PB = \angle OPB$... (3)

From figure, it is clear that,

 \angle O'PB < \angle OPB ... (4)





Therefore, $\angle O'PB = \angle OPB$ is not possible. It is possible only when OP and O'P coincident lines.

Therefore, the perpendicular drawn at P passes through the centre O.

Question 6:

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Answer 6:

Let O be the centre and AB is a tangent at B.

Given: OA = 5cm and AB = 4cm

We know that the radius is perpendicular to tangent.

Therefore, in $\triangle ABO$, $OB \perp AB$.

In ΔABO, by Pythagoras theorem,

 $AB^2 + BO^2 = OA^2$

 \Rightarrow 4² + BO² = 5²

 \Rightarrow 16 + BO² = 25

 \Rightarrow BO² = 9

⇒B0 = 3

Therefore, the radius of circle is 3 cm.

O 5 cm A

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 10) (Circles) (Class 10)

Question 7:

Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Answer 7:

Let 0 be the centre of two concentric circles with radius 5 cm (OP) and 3 cm (OA). PQ is chord of larger circle which is a tangent to inner circle.

We know that the radius is perpendicular to tangent. Therefore, in ΔPQO , $OA \perp PQ$.

In ΔAPO, by Pythagoras theorem,

$$OA^2 + AP^2 = OP^2$$
$$\Rightarrow 3^2 + AP^2 = 5^2$$

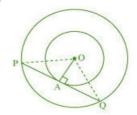
$$\Rightarrow$$
 9 + AP² = 25 \Rightarrow AP² = 16 \Rightarrow AP = 4

In \triangle OPQ, OA \perp PQ,

AP = AQ [Perpendicular from the centre bisects the chord]

So, $PO = 2AP = 2 \times 4 = 8$

Hence, the length of chord of larger circle is 8 cm.



Ouestion 8:

A quadrilateral ABCD is drawn to circumscribe a circle (see Figure). Prove that: AB + CD = AD + BC

Answer 8:

We know that the tangents drawn from same external point are equal. Therefore,

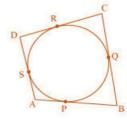
DR = DS	[Tangents drawn from point D]	/	(1)
CR = CQ	[Tangents drawn from point C]		(2)
BP = BQ	[Tangents drawn from point B]		(3)
AP = AS	[Tangents drawn from point A]		(4)

Adding (1), (2), (3) and (4), we have

$$DR + CR + BP + AP = DS + CQ + BQ + AS$$

$$\Rightarrow (DR + CR) + (BP + AP) = (DS + AS) + (CQ + BQ)$$

 \Rightarrow CD + AB = AD + BC



Question 9:

In Figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that $\angle AOB = 90^{\circ}$.

Answer 9:

Join C from O.

In \triangle OPA and \triangle OCA,

OP = OC [Radii of same circle]

AP = AC [Tangents drawn from point A]

AO = AO [Common]

 $\Delta OPA \cong \Delta OCA$ [SSS Congruency rule]

Hence, $\angle POA = \angle COA$... (i)

Similarly, $\triangle OQB \cong \triangle OCB$

Hence, $\angle QOB = \angle COB$... (ii)

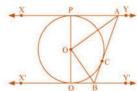
As POQ is diameter of circle, therefore it is a straight line.

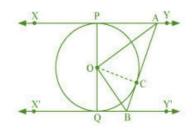
Hence, $\angle POA + \angle COA + \angle COB + \angle QOB = 180^{\circ}$

From (i) and (ii), we have, $2\angle COA + 2\angle COB = 180^{\circ}$

 $\Rightarrow \angle COA + \angle COB = 90^{\circ}$

⇒ ∠AOB = 90°





www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 10) (Circles) (Class 10)

Question 10:

Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Answer 10:

Let PA and PB are two tangents of circle with centre O. Join OA and OB.

We know that the radius is perpendicular to tangent. Therefore

$$\angle$$
OAP = 90° and \angle OBP = 90°.

In quadrilateral OAPB, ∠OAP +∠APB+∠PBO +∠BOA = 360°

$$\Rightarrow$$
 90° + \angle APB + 90° + \angle BOA = 360° \Rightarrow \angle APB + \angle BOA = 180°

Hence, it is proved that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Question 11:

Prove that the parallelogram circumscribing a circle is a rhombus.

Answer 11:

ABCD is a parallelogram, therefore

$$AB = CD$$
 ... (1) $BC = AD$... (2)

We know that the tangent drawn from same external point to circle are equal. So,

Adding (3), (4), (5) and (6), we have

$$DR + CR + BP + AP = DS + CQ + BQ + AS$$

$$\Rightarrow$$
 (DR + CR) + (BP + AP) = (DS + AS) + (CQ + BQ)

 \Rightarrow CD + AB = AD + BC

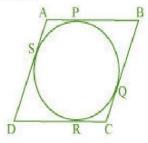
From (1) and (2), we have

$$2AB = 2BC \Rightarrow AB = BC$$

From (1), (2) and (7), we have

AB = BC = CD = DA

Hence, ABCD is a rhombus.



Question 12:

A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Figure). Find the sides AB and AC.

Let the circle touches AB and AC at E and F respectively. Let AF = x cm

We know that the tangents drawn from same external point to the circle are equal. Therefore,

CF = CD = 6cm [Tangents drawn from point C]
BE = BD = 8cm [Tangents drawn from point B]
AE = AF = x [Tangents drawn from point A]
AB = AE + EB = x + 8
BC = BD + DC = 8 + 6 = 14
CA = CF + FA = 6 + xIn \triangle ABC,
2s = AB + BC + CA = x + 8 + 14 + 6 + x = 28 + 2 x \therefore s = 14 + x

www.tiwariacademy.in

(www.tiwariacademy.in) (Chapter - 10) (Circles) (Class 10)

Area of AABC

$$= \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{\{14+x\}\{(14+x)-14\}\{(14+x)-(8+x)\}\{(14+x)-(6+x)\}}$$

$$= \sqrt{(14+x)(x)(6)(8)}$$

$$= \sqrt{48x(14+x)} \text{ cm}^2$$

$$= 4\sqrt{3(14x+x^2)} \text{ cm}^2$$

Area of
$$\triangle OBC = \frac{1}{2} \times OD \times BC = \frac{1}{2} \times 4 \times 14 = 28 \text{ cm}^2$$

Area of $\triangle OCA = \frac{1}{2} \times OF \times AC = \frac{1}{2} \times 4 \times (6 + x) = 12 + 2x \text{ cm}^2$
Area of $\triangle OAB = \frac{1}{2} \times OE \times AB = \frac{1}{2} \times 4 \times (8 + x) = 16 + 2x \text{ cm}^2$

Area of $\triangle ABC$ = Area of $\triangle OBC$ + Area of $\triangle OCA$ + Area of $\triangle OAB$

$$\Rightarrow 4\sqrt{3(14x + x^2)} = 28 + (12 + 2x) + (16 + 2x)$$

$$\Rightarrow 4\sqrt{3(14x + x^2)} = 56 + 4x$$

$$\Rightarrow \sqrt{3(14x + x^2)} = 14 + x$$

$$\Rightarrow 3(14x + x^{2}) = (14 + x)^{2} \Rightarrow 42x + 3x^{2} = 196 + x^{2} + 28x$$

$$\Rightarrow 2x^{2} + 14x - 196 = 0 \Rightarrow x^{2} + 7x - 98 = 0$$

$$\Rightarrow x^{2} + 14x - 7x - 98 = 0 \qquad \Rightarrow x(x + 14) - 7(x + 14) = 0$$

$$\Rightarrow (x+14)(x-7) = 0$$
$$\Rightarrow x+14 = 0 \text{ or } x-7 = 0$$

Therefore
$$x = 14$$
 or 7

Therefore, x = -14 or 7

But the side of triangle can't be negative, $x \ne -14$. Therefore, x = 7 Hence, AB = x + 8 = 7 + 8 = 15 cm and CA = 6 + x = 6 + 7 = 13 cm

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer 13:

Quadrilateral ABCD is circumscribing a circle with centre O, touching at points P, Q, R and S.

Join the points P, Q, R and S from the centre O.

In \triangle OAP and \triangle OAS,

OP = OS [Radii of same circle]

AP = AS [Tangents drawn from point A]

AO = AO [Common]

 $\Delta OPA \cong \Delta OCA$ [SSS Congruency rule]

Hence, $\angle POA = \angle SOA$ or $\angle 1 = \angle 8$

Similarly, $\angle 2 = \angle 3$, $\angle 4 = \angle 5$ and $\angle 6 = \angle 7$ Sum of all angles at point 0 is 360°. Therefore

Similarly, we can prove $\angle BOC + \angle DOA = 180^{\circ}$

Hence, the opposite sides subtend supplementary angles at the centre.

