
Topic 1 Moment of Inertia

Objective Questions I (Only one correct option)

1. A circular disc of radius b has a hole of

radius a at its centre (see figure). If the

mass per unit area of the disc varies as

σ0

r






, then the radius of gyration of the

disc about its axis passing through the

centre is (2019 Main, 12 April I)
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a b ab2 2

2

+ +
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2. A solid sphere of mass M and radius R is divided into two

unequal parts. The first part has a mass of
7

8

M
and is

converted into a uniform disc of radius 2R. The second part is

converted into a uniform solid sphere. Let I1 be the moment

of inertia of the disc about its axis and I2 be the moment of

inertia of the new sphere about its axis.

The ratio I I1 2/ is given by (2019 Main, 10 Apri II)

(a) 285 (b) 185 (c) 65 (d) 140

3. A thin disc of mass M and radius R has mass per unit area

σ( ) =r kr2, where r is the distance from its centre. Its moment

of inertia about an axis going through its centre of mass and

perpendicular to its plane is (2019 Main, 10 April I)

(a)
MR2

2
(b)

MR2

6

(c)
MR2

3
(d)

2

3

2MR

4. A stationary horizontal disc is free to rotate about its axis.

When a torque is applied on it, its kinetic energy as a function

of θ, where θ is the angle by which it has rotated, is given as

kθ2. If its moment of inertia is I, then the angular acceleration

of the disc is (2019 Main, 9 April I)

(a)
k

I2
θ (b)

k

I
θ (c)

k

I4
θ (d)

2k

I
θ

5. A thin circular plate of mass M and radius R has its density

varying as ρ = ρ( )r r0 with ρ0 as constant and r is the distance

from its centre. The moment of inertia of the circular plate

about an axis perpendicular to the plate and passing through

its edge is I aMR= 2. The value of the coefficient a is

(2019 Main, 8 April I)

(a)
1

2
(b)

3

5
(c)

8

5
(d)

3

2

6. The moment of inertia of a solid sphere, about an axis

parallel to its diameter and at a distance of x from it, is ‘I x( )’.

Which one of the graphs represents the variation of I x( )with

x correctly? (2019 Main, 12 Jan II)

7. Let the moment of inertia of a hollow cylinder of length 30

cm (inner radius 10 cm and outer radius 20 cm) about its axis

be I. The radius of a thin cylinder of the same mass such that

its moment of inertia about its axis is also I, is
(2019 Main, 12 Jan I)

(a) 16 cm (b) 14 cm (c) 12 cm (d) 18 cm

8. A circular disc D1 of mass M

and radius R has two identical

discs D2 and D3 of the same

mass M and radius R attached

rigidly at its opposite ends (see

figure). The moment of inertia

of the system about the axis

OO ′ passing through the centre of D1, as shown in the figure

will be (2019 Main, 11 Jan II)

(a)
2

3

2MR (b)
4

5

2MR (c) 3 2MR (d) MR2
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9. An equilateral triangle ABC is cut

from a thin solid sheet of wood. (see

figure) D E, and F are the mid points

of its sides as shown and G is the

centre of the triangle. The moment of

inertia of the triangle about an axis

passing through G and perpendicular

to the plane of the triangle is I0. If the

smaller triangle DEF is removed from ABC, the moment of

inertia of the remaining figure about the same axis is I.

Then (2019 Main, 11 Jan I)

(a) I I′ = 3

4
0 (b) I I′ = 15

16
0 (c) I

I′ = 0

4
(d) I I′ = 9

16
0

10. Two identical spherical balls of mass M and radius R each

are stuck on two ends of a rod of length 2R and mass M (see

figure).

The moment of inertia of the system about the axis passing

perpendicularly through the centre of the rod is
(2019 Main, 10 Jan II)

(a)
137

15

2MR (b)
209

15

2MR (c)
17

15

2MR (d)
152

15

2MR

11. Seven identical circular planar discs, each of mass M and

radius R are welded symmetrically as shown in the figure.

The moment of inertia of the arrangement about an axis

normal to the plane and passing through the point P is
(2018 Main)

(a)
181

2

2MR (b)
19

2

2MR (c)
55

2

2MR (d)
73

2

2MR

12. From a uniform circular disc of

radius R and mass 9M , a small disc

of radius
R

3
is removed as shown in

the figure. The moment of inertia of

the remaining disc about an axis

perpendicular to the plane of the

disc and passing through centre of

disc is (2018 Main)

(a)
37

9

2MR (b) 4 2MR

(c)
40

9

2MR (d) 10 2MR

13. The moment of inertia of a uniform cylinder of length l and

radius R about its perpendicular bisector is I. What is the

ratio l/ R such that the moment of inertia is minimum?
(2017 Main)

(a)
3

2
(b) 1 (c)

3

2
(d)

3

2

14. A cylinder uniform rod of mass M and

length l is pivoted at one end so that it can

rotate in a vertical plane (see the figure).

There is negligible friction at the pivot.

The free end is held vertically above the

pivot and then released. The angular acceleration of the rod

when it makes an angle θ with the vertical, is (2017 Main)

(a)
2

3

g

l
sin θ (b)

3

2

g

l
cos θ (c)

2

3

g

l
cosθ (d)

3

2

g

l
sinθ

15. From a solid sphere of mass M and radius R, a cube of

maximum possible volume is cut. Moment of inertia of cube

about an axis passing through its centre and perpendicular to

one of its faces is (2015 Main)

(a)
MR2

32 2π
(b)

4

9 3

2MR

π
(c)

MR2

16 2π
(d)

4

3 3

2MR

π

16. A solid sphere of radius R has

moment of inertia I about its

geometrical axis. It is melted into a

disc of radius r and thickness t. If

it’s moment of inertia about the

tangential axis (which is

perpendicular to plane of the disc),

is also equal to I , then the value of r is equal to (2006, 3M)

(a)
2

15
R (b)

2

5
R (c)

3

15
R (d)

3

15
R

17. From a circular disc of radius R and

mass 9M, a small disc of radius R /3

is removed from the disc. The

moment of inertia of the remaining

disc about an axis perpendicular to

the plane of the disc and passing

through O is (2005)

(a) 4 2MR (b)
40

9

2MR

(c) 10 2MR (d)
37

9

2MR

18. One quarter section is cut from a uniform

circular disc of radius R. This section has a

mass M . It is made to rotate about a line

perpendicular to its plane and passing through

the centre of the original disc. Its moment of

inertia about the axis of rotation is (2001)

(a)
1

2

2MR (b)
1

4

2MR (c)
1

8
2MR (d) 2 2MR
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19. A thin wire of length L and uniform linear mass density ρ is

bent into a circular loop with centre at O as shown. The

moment of inertia of the loop about the axis XX ′ is (2000)

(a)
ρ
π
L3

28
(b)

ρ
π
L3

216
(c)

5

16

3

2

ρ
π
L

(d)
3

8

3

2

ρ
π
L

20. Let I be the moment of inertia of a uniform square plate about

an axis AB that passes through its centre and is parallel to two

of its sides. CD is a line in the plane of the plate that passes

through the centre of the plate and makes an angleθwith AB.

The moment of inertia of the plate about the axis CD is then

equal to (1998, 2M)

(a) I (b) I sin 2 θ
(c) I cos2 θ (d) I cos ( / )2 2θ

Objective Question II (One or more correct option)

21. The moment of inertia of a thin square

plate ABCD, of uniform thickness

about an axis passing through the

centre O and perpendicular to the plane

of the plate is (1992, 2M)

(a) I I1 2+ (b) I I3 4+
(c) I I1 3+ (d) I I I I1 2 3 4+ + +
where, I I I1 2 3, , and I4 are respectively moments of inertia

about axes 1, 2, 3 and 4 which are in the plane of the plate.

Integer Answer Type Questions

22. A lamina is made by removing a small

disc of diameter 2R from a bigger disc

of uniform mass density and radius

2R, as shown in the figure. The

moment of inertia of this lamina about

axes passing throughO and P is IO and

IP , respectively. Both these axes are perpendicular to the

plane of the lamina. The ratio
I

I

P

O

to the nearest integer is
(2012)

23. Four solid spheres each of diameter 5 cm and mass 0.5 kg

are placed with their centres at the corners of a square of side

4 cm. The moment of inertia of the system about the diagonal

of the square is N × −10 4 kg-m2, then N is (2011)

Fill in the Blank

24. A symmetric lamina of mass M consists of a square shape

with a semi-circular section over of the edge of the square as

shown in figure. The side of the square is 2a. The moment of

inertia of the lamina about an axis through its centre of mass

and perpendicular to the plane is 1.6 Ma2. The moment of

inertia of the lamina about the tangent AB in the plane of the

lamina is ……… (1997, 2M)
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Topic 2 Angular Momentum and its Conservation

Objective Questions I (Only one correct option)

1. The time dependence of the position of a particle of mass

m = 2 is given by r i j( ) $ $t t t= −2 3 2 . Its angular momentum,

with respect to the origin, at time t = 2 is

(a) 36 $k (b) − −34 ( $ $ )k i

(c) − 48 $k (d) 48 ($ $ )i j+

2. A thin smooth rod of length L and mass M is rotating freely

with angular speed ω0 about an axis perpendicular to the rod

and passing through its centre. Two beads of mass m and

negligible size are at the centre of the rod initially. The beads

are free to slide along the rod. The angular speed of the

system, when the beads reach the opposite ends of the rod,

will be (2019 Main, 09 April II)

(a)
M

M m

ω0

3+
(b)

M

M m

ω0

+
(c)

M

M m

ω0

2+
(d)

M

M m

ω0

6+

3. A particle of mass 20 g is released with an initial velocity 5

m/s along the curve from the point A, as shown in the figure.

The point A is at height h from point B. The particle slides

along the frictionless surface. When the particle reaches

point B, its angular momentum about O will be (Take,

g = 10 m/ s2) (2019 Main, 12 Jan II)

(a) 8 kg- m s2 / (b) 3 kg- m s2 /

(c) 2 kg- m s2 / (d) 6 kg- m s2 /

O

2a

A B

O

a = 10 m

h = 10 m

A

B



4. A ring of mass M and radius R is

rotating with angular speed ω about a

fixed vertical axis passing through its

centre O with two point masses each

of mass
M

8
at rest at O. These masses

can move radially outwards along two

massless rods fixed on the ring as

shown in the figure.

At some instant, the angular speed of the system is
8

9
ω and one

of the masses is at a distance of
3

5
R from O. At this instant, the

distance of the other mass from O is (2015 Adv.)

(a)
2

3
R (b)

1

3
R

(c)
3

5
R (d)

4

5
R

5. A bob of mass m attached to an inextensible string of length l is

suspended from a vertical support. The bob rotates in a

horizontal circle with an angular speedω rad/s about the vertical

support. About the point of suspension (2014 Main)

(a) angular momentum is conserved

(b) angular momentum changes in magnitude but not in

direction

(c) angular momentum changes in direction but not in

magnitude

(d) angular momentum changes both in direction and

magnitude

6. A small mass m is attached to a massless string

whose other end is fixed at P as shown in the

figure. The mass is undergoing circular

motion in the x- y plane with centre at O and

constant angular speed ω. If the angular

momentum of the system, calculated about O

and P are denoted by LO and LP respectively,

then

(a) LO and LP do not vary with time (2012)

(b) LO varies with time while LP remains constant

(c) LO remains constant while LP varies with time

(d) LO and LP both vary with time

7. A child is standing with folded hands at the centre of a platform

rotating about its central axis. The kinetic energy of the system

is K . The child now stretches his arms so that the moment of

inertia of the system doubles. The kinetic energy of the system

now is (2004)

(a) 2K (b) K / 2 (c) K / 4 (d) 4K

8. A particle undergoes uniform circular motion. About which

point on the plane of the circle, will the angular momentum of

the particle remain conserved ? (2003)

(a) Centre of circle

(b) On the circumference of the circle

(c) Inside the circle

(d) Outside the circle

9. A circular platform is free to rotate in a horizontal plane

about a vertical axis passing through its centre. A tortoise

is sitting at the edge of the platform. Now, the platform is

given an angular velocity ω0. When the tortoise move

along a chord of the platform with a constant velocity

(with respect to the platform). The angular velocity of the

platform ω( )t will vary with time t as (2002)

10. An equilateral triangle ABC formed

from a uniform wire has two small

identical beads initially located at A.

The triangle is set rotating about the

vertical axis AO. Then the beads are

released from rest simultaneously

and allowed to slide down, one along

AB and other along AC as shown.

Neglecting frictional effects, the quantities that are

conserved as beads slides down are (2000)

(a) angular velocity and total energy (kinetic and

potential)

(b) total angular momentum and total energy

(c) angular velocity and moment of inertia about the axis
of rotation

(d) total angular momentum and moment of inertia about

the axis of rotation

11. A disc of mass M and radius R is rolling with angular

speed ω on a horizontal plane as shown. The magnitude of

angular momentum of the disc about the origin O is
(1999, 2M)

(a)
1

2

2





MR ω (b) MR2ω

(c)
3

2

2





MR ω (d) 2 2MR ω
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12. A mass m is moving with a constant velocity along a line

parallel to the X-axis, away from the origin. Its angular

momentum with respect to the origin (1997C, 1M)

(a) is zero (b) remains constant

(c) goes on increasing (d) goes on decreasing

13. A particle of mass m is projected with a velocity v making an

angle of 45° with the horizontal. The magnitude of the

angular momentum of the projectile about the point of

projection when the particle is at its maximum height h is

(a) zero (b) mv g3 4 2/( ) (1990, 2M)

(c) mv g3 2/( ) (d) m gh2 3

14. A thin circular ring of mass M and radius r is rotating about

its axis with a constant angular velocity ω.Two objects, each

of mass m, are attached gently to the opposite ends of a

diameter of the ring. The wheel now rotates with an angular

velocity (1983, 1M)

(a) ω M M m/ ( )+ (b) ω ( ) / ( )M m M m− +2 2

(c) ω M M m/ ( )+ 2 (d) ω ( ) /M m M+ 2

Objective Question II (One or more correct option)

15. The torque τ on a body about a given point is found to be

equal to A L× , where A is a constant vector and L is the

angular momentum of the body about that point. From this it

follows that (1998, 2M)

(a)
dL

dt
is perpendicular to L at all instants of time

(b) the component of L in the direction of A does not change

with time

(c) the magnitude of L does not change with time

(d) L does not change with time

Passage Based Questions

Passage 1

A frame of the reference that is

accelerated with respect to an

inertial frame of reference is

called a non-inertial frame of

reference. A coordinate system

fixed on a circular disc rotating

about a fixed axis with a

constant angular velocity ω is

an example of a non-inertial frame of reference. The

relationship between the force Frot experienced by a particle

of mass m moving on the rotating disc and the force Fin

experienced by the particle in an inertial frame of reference

is, F F v rrot in rot= + × + × ×2m m( ) ( )
r r r
ω ω ω,

where, vrot is the velocity of the particle in the rotating frame

of reference and r is the position vector of the particle with

respect to the centre of the disc. Now, consider a smooth slot

along a diameter of a disc of radius R rotating

counter-clockwise with a constant angular speed ω about its

vertical axis through its centre. We assign a coordinate

system with the origin at the centre of the disc, the X-axis

along the slot, the Y-axis perpendicular to the slot and the

z-axis along th rotation axis ( )ω ω= k . A small block of mass

m is gently placed in the slot at r i= ( / )$R 2 at t = 0 and is

constrained to move only along the slot. (2016 Adv.)

16. The distance r of the block at time t is

(a)
R

t
2

2cos ω (b)
R

t
2

cosω

(c)
R

e e
4

( )ω ωt t+ − (d)
R

e e
4

( )2 t 2 tω ω+ −

17. The net reaction of the disc on the block is

(a) m R t mgω ω2 sin $ $j k−

(b)
1

2

2m R e e mgt tω ω ω( )$ $− +−
j k

(c)
1

2

2 2 2m R e e mgt tω ω ω( )$ $− +−
j k

(d) − −m R t mgω ω2 cos $ $j k

Integer Answer Type Questions

18. A horizontal circular

platform of radius 0.5 m and

mass 0.45 kg is free to rotate

about its axis. Two massless

spring toy-guns, each

carrying a steel ball of mass

0.05 kg are attached to the platform at a distance 0.25 m from

the centre on its either sides along its diameter (see figure).

Each gun simultaneously fires the balls horizontally and

perpendicular to the diameter in opposite directions. After

leaving the platform, the balls have horizontal speed of

9 1
ms

− with respect to the ground. The rotational speed of

the platform in rad s
−1 after the balls leave the platform is

(2014 Adv.)

19. A uniform circular disc of mass 50 kg and radius 0.4 m is

rotating with an angular velocity of 10 rad/s about its own

axis, which is vertical. Two uniform circular rings, each of

mass 6.25 kg and radius 0.2 m, are gently placed

symmetrically on the disc in such a manner that they are

touching each other along the axis of the disc and are

horizontal. Assume that the friction is large enough such that

the rings are at rest relative to the disc and the system rotates

about the original axis. The new angular velocity (in rad s−1)

of the system is (2013 Adv.)

20. A binary star consists of two stars A (mass 2.2M S ) and B

(mass 11M S ), where M S is the mass of the sun. They are

separated by distance d and are rotating about their centre of

mass, which is stationary. The ratio of the total angular

momentum of the binary star to the angular momentum of star

B about the centre of mass is (2010)
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Fill in the Blanks

21. A stone of mass m, tied to the end of a string, is whirled

around in a horizontal circle. (Neglect the force due to

gravity). The length of the string is reduced gradually

keeping the angular momentum of the stone about the

centre of the circle constant. Then, the tension in the

string is given by T Arn= , where A is a constant, r is

the instantaneous radius of the circle. Then n = …… .
(1993, 1M)

22. A smooth uniform rod of length L and mass M has two

identical beads of negligible size, each of mass m,

which can slide freely along the rod. Initially, the two

beads are at the centre of the rod and the system is

rotating with an angular velocity ω0 about an axis

perpendicular to the rod and passing through the

mid-point of the rod (see figure).

There are no external forces. When the beads reach the

ends of the rod, the angular velocity of the system

is…… . (1988, 2M)

True/False

23. A thin uniform circular disc of mass M and radius R is rotating in a

horizontal plane about an axis passing through its centre and

perpendicular to its plane with an angular velocity ω. Another disc

of the same dimensions but of mass M/4 is placed gently on the first

disc coaxially. The angular velocity of the system now is 2 5ω/ .

(1986, 3M)

Analytical & Descriptive Questions

24. A particle is projected at time t = 0 from a point P on the ground

with a speed v0 , at an angle of 45° to the horizontal. Find the

magnitude and direction of the angular momentum of the particle

about P at time t
v

g
= 0 .

(1984, 6M)

Topic 3 Pure Rolling or Rolling without Slipping

Objective Questions I (Only one correct option)

1 A metal coin of mass 5g and radius 1 cm is fixed to a

thin stick AB of negligible mass as shown in the figure.

The system is initially at rest. The constant torque, that

will make the system rotate about AB at 25 rotations

per second in 5s, is close to (2019 Main, 10 April II)

(a) 4 0 10 6. × − N-m (b) 2 0 10 5. × − N-m

(c) 16 10 5. × − N-m (d) 7 9 10 6. × − N-m

2 Moment of inertia of a body about a given axis is 1.5 kg

m2. Initially, the body is at rest. In order to produce a

rotational kinetic energy of 1200 J, the angular

acceleration of 20 rad/s2 must be applied about the axis

for a duration of (2019 Main, 9 April II)

(a) 5 s (b) 2 s (c) 3 s (d) 2.5 s

3 The following bodies are made to roll up (without

slipping) the same inclined plane from a horizontal

plane : (i) a ring of radius R, (ii) a solid cylinder of

radius R / 2 and (iii) a solid sphere of radius R / 4. If in

each case, the speed of the centre of mass at the bottom of the

incline is same, the ratio of the maximum height they climb is
(2019 Main, 9 April I)

(a) 10 15 7: : (b) 4 3 2: :

(c) 14 15 20: : (d) 2 3 4: :

4 A solid sphere and solid cylinder of identical radii approach an

incline with the same linear velocity (see figure). Both roll without

slipping all throughout. The two climb maximum heights hsph and

hcyl on the incline. The ratio
h

h

sph

cyl

is given by

(2019 Main, 8 Ap[ril II)

(a)
2

5
(b)

14

15
(c) 1 (d)

4

5

5 A string is wound around a hollow cylinder of mass 5 kg and radius

0.5 m. If the string is now pulled with a horizontal force of 40 N

and the cylinder is rolling without slipping on a horizontal surface

(see figure), then the angular acceleration of the cylinder will be

(Neglect the mass and thickness of the string)

(2019 Main, 11 Jan II)

(a) 10 rad / s2 (b) 16 rad / s2

(c) 20 rad / s2 (d) 12 rad / s2
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6 A homogeneous solid cylindrical roller of radius R and mass m

is pulled on a cricket pitch by a horizontal force. Assuming

rolling without slipping, angular acceleration of the cylinder is
(2019 Main, 10 Jan I)

(a)
F

m R2
(b)

2

3

F

m R
(c)

3

2

F

m R
(d)

F

m R3

7. A mass m supported by a massless string

wound around a uniform hollow cylinder of

mass m and radius R. If the string does not

slip on the cylinder, with what acceleration

will the mass fall on release? (2014 Main)

(a) 2 3g / (b) g / 2

(c) 5 6g / (d) g

8. Two solid cylinders P and Q of same mass and same radius

start rolling down a fixed inclined plane from the same height

at the same time. Cylinder P has most of its mass

concentrated near its surface, while Q has most of its mass

concentrated near the axis. Which statement(s) is(are)

correct? (2012)

(a) Both cylinders P andQ reach the ground at the same time

(b) Cylinder P has larger linear acceleration than cylinderQ

(c) Both cylinders reach the ground with same translational

kinetic energy

(d) CylinderQ reaches the ground with larger angular speed

9. A small object of uniform density rolls up a curved surface

with an initial velocity v. It reaches up to a maximum height

of
3

4

2v

g
with respect to the initial position. The object is

(2007, 3M)

(a) ring (b) solid sphere

(c) hollow sphere (d) disc

10. A ball moves over a fixed track as shown in the figure. From

A to B the ball rolls without slipping. If surface BC is

frictionless and K KA B, and KC are kinetic energies of the

ball at A, B and C respectively, then (2006, 5M)

(a) h h K KA C B C> >; (b) h h K KA C C A> >;

(c) h h K KA C B C= =; (d) h h K KA C B C< >;

11. A disc is rolling (without slipping) on a horizontal surface. C

is its centre andQ and P are two points equidistant fromC.Let

v v vP Q C, and be the magnitude of velocities of points P Q,

and C respectively, then (2004)

(a) v v vQ C P> > (b) v v vQ C P< <

(c) v v v vQ P C P= =,
1

2
(d) v v vQ C P< >

12. A cylinder rolls up an inclined plane, reaches some height

and then rolls down (without slipping throughout these

motions). The directions of the frictional force acting on the

cylinder are (2002)

(a) up the incline while ascending and down the incline

while descending

(b)  up the incline while ascending as well as  descending

(c) down the incline while ascending and up the incline
while descending

(d) down the incline while ascending as well as descending

Assertion and Reason

Mark your answer as

(a) If Statement I is true, Statement II is true; Statement II is

the correct explanation for Statement I

(b) If Statement I is true, Statement II is true; Statement II is

not a  correct explanation for Statement I

(c) If Statement I is true; Statement II is false

(d) If Statement I is false; Statement II is true

13. Statement I Two cylinders, one hollow (metal) and the

other solid (wood) with the same mass and identical

dimensions are simultaneously allowed to roll without slipping

down an inclined plane from the same height. The hollow

cylinder will reach the bottom of the inclined plane  first.

Statement II By the principle of conservation of energy,

the total kinetic energies of both the cylinders are identical

when they reach the bottom of the incline. (2008, 3M)

Passage Based Questions

Passage 1

A uniform thin cylindrical disk of mass M and radius R is

attached to two identical massless springs of spring constant

k which are fixed to the wall as shown in the figure. The

springs are attached to the axle of the disk diammetrically on

either side at a distance d from its centre. The axle is massless

and both the springs and the axle are in a horizontal plane.

The unstretched length of each spring is L.
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The disk is initially at its equilibrium position with its centre of

mass (CM) at a distance L from the wall. The disk rolls without

slipping with velocity v i0 0= v $. The coefficient of friction is µ.

14. The net external force acting on the disk when its centre of mass

is at displacement x with respect to its equilibrium position is
(2008, 4M)

(a) −kx (b) −2kx (c) − 2

3

kx
(d) − 4

3

kx

15. The centre of mass of the disk undergoes simple harmonic

motion with angular frequency ω equal to (2008 , 4M)

(a)
k

M
(b)

2k

M
(c)

2

3

k

M
(d)

4

3

k

M

16. The maximum value of v0 for which the disk will roll without

slipping is (2008, 4M)

(a) µg
M

k
(b) µg

M

k2
(c) µg

M

k

3
(d) µg

M

k

5

2

Objective Questions II (One or more correct option)

17. A wheel of radius R and mass

M is placed at the bottom of a

fixed step of height R as

shown in the figure. A

constant force is continuously

applied on the surface of the

wheel so that it just climbs the

step without slipping.

Consider the torque τ about an

axis normal to the plane of the paper passing through the point

Q. Which of the following options is/are correct? (2017 Adv.)

(a) If the force is applied normal to the circumference at point

P, then τ is zero

(b) If the force is applied tangentially at point S , then τ ≠ 0but

the wheel never climbs the step

(c) If the force is applied at point P tangentially, then τ
decreases continuously as the wheel climbs

(d) If the force is applied normal to the circumference at point

X , then τ is constant

18. Two thin circular discs of mass m and 4m, having radii of a and

2a, respectively, are rigidly fixed by a massless, rigid rod of

length l a= 24 through their centers. This assembly is laid on a

firm and flat surface and set rolling without slipping on the

surface so that the angular speed about the axis of the rod is ω.

The angular momentum of the entire assembly about the point ‘

O’ is L (see the figure). Which of the following statement(s) is

(are) true?
(2016 Adv.)

(a) The magnitude of the z-component of L is 55 ma2ω
(b) The magnitude of angular momentum of centre of

mass of the assembly about the point O is 81 2ma ω
(c) The centre of mass of the assembly rotates about the

Z-axis with an angular speed of
ω
5

(d) The magnitude of angular momentum of the

assembly about its centre of mass is 17 ma2 ω
2

19. The figure shows a system consisting of (i) a ring of outer

radius 3R rolling clockwise without slipping on a

horizontal surface with angular speed ω and (ii) an inner

disc of radius 2R rotating anti-clockwise with angular

speed ω/2.

The ring and disc are separated by frictionless ball

bearings. The system is in the x-z plane. The point P on the

inner disc is at a distance R from the origin, where OP

makes an angle of 30° with the horizontal. Then with

respect to the horizontal surface, (2012)

(a) the point O has a linear velocity 3Rω$i

(b) the point P has a linear velocity
11

4

3

4
R Rω ω$ $i k+

(c) the point P has a linear velocity
13

4

3

4
R Rω ω$ $i k−

(d) the point P has a linear velocity

3
3

4

1

4
−









 +R Rω ω$ $i k

20. A sphere is rolling without slipping on a fixed horizontal

plane surface.

In the figure, A is the point of contact. B is the centre of

the sphere and C is its topmost point. Then, (2009)

(a) v v v vC A B C− = −2( ) (b) v v v vC B B A− = −
(c) | | | |v v v vC A B C− = −2 (d) | | | |v v vC A B− = 4

P
Q

R

S

a
2a

l

l

z

o

m

4m

ω

x

ω

z

30°

Pω/2

3R

2R
O

R

B

A

C



21. A solid sphere is in pure rolling motion on an inclined

surface having inclination θ (2006, 5M)

(a) frictional force acting on sphere is f mg= µ θcos

(b) f is dissipative force

(c) friction will increase its angular velocity and decrease

its linear velocity

(d) If θ decreases, friction will decrease

Numerical Value Based Question

22. A ring and a disc are initially at rest, side by side, at the top

of an inclined plane which makes an angle 60° with the

horizontal. They start to roll without slipping at the same

instant of time along the shortest path. If the time

difference between their reaching the ground is

(2 − 3 10) / s, then the height of the top of the inclined

plane, in metres, is .......... . (Take, g = −10 2
ms ) (2018 Main)

Fill in the Blanks

23. A uniform disc of mass m and radius R is rolling up a rough

inclined plane which makes an angle of 30° with the

horizontal. If the coefficients of static and kinetic friction

are each equal to µ and the only forces acting are

gravitational and frictional, then the magnitude of the

frictional force acting on the disc is ……… and its

direction is ……… (write up or down) the inclined plane.
(1997C, 1M)

24. A cylinder of mass M and radius R is resting on a horizontal

platform (which is parallel to the x-y plane) with its axis

fixed along the Y-axis and free to rotate about its axis. The

platform is given a motion in the x-direction given by

x A t= cos ( )ω . There is no slipping between the cylinder

and platform. The maximum torque acting on the cylinder

during its motion is ……… . (1988, 2M)

True / False

25. A ring of mass 0.3 kg and radius 0.1 m and a solid cylinder

of mass 0.4 kg and of the same radius are given the same

kinetic energy and released simultaneously on a flat

horizontal surface such that they begin to roll as soon as

released towards a wall which is at the same distance from

the ring and the cylinder. The rolling friction in both cases

is negligible. The cylinder will reach the wall first.
(1989, 2M)

Integer Answer Type Question

26. Two identical uniform discs roll without slipping on two

different surfaces AB and CD (see figure) starting at A and C

with linear speeds v1 and v2, respectively, and always remain in

contact with the surfaces. If they reach B and D with the same

linear speed and v1 3= m/s, then v2 in m/s is

(g = 10 m s/ 2) (2015 Adv.)

27. A boy is pushing a ring of mass

2 kg and radius 0.5 m with a

stick as shown in the figure. The

stick applies a force of 2 N on

the ring and rolls it without

slipping with an acceleration of

0.3 m/s2. The coefficient of

friction between the ground and

the ring is large enough that

rolling always occurs and the

coefficient of friction between the stick and the ring is
P

10






.

The value of P is (2011)

Analytical & Descriptive Questions

28. A solid cylinder rolls without slipping on an inclined plane

inclined at an angle θ. Find the linear acceleration of the

cylinder. Mass of the cylinder is M. (2005, 4M)

29. A man pushes a cylinder of mass m1with the help of a plank of

mass m2 as shown. There is no slipping at any contact. The

horizontal component of the force applied by the man is F .

Find (1999, 10M)

(a) the accelerations of the plank and the centre of mass of the

cylinder and

(b) the magnitudes and directions of frictional forces at

contact points.
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30. Two thin circular discs of mass 2 kg and radius 10 cm each

are joined by a rigid massless rod of length 20 cm. The axis of

the rod is along the perpendicular to the planes of the disc

through their centres. This object is kept on a truck in such a

way that the axis of the object is horizontal and perpendicular

to the direction of motion of the truck.

Its friction with the floor of the truck is large enough, so that

the object can roll on the truck without slipping. Take X-axis

as the direction of motion of the truck and Z-axis as the

vertically upwards direction. If the truck has an acceleration

9 m s2/ , calculate (1997, 5M)

(a)  the force of friction on each disc and

(b) the magnitude and direction of the frictional torque

acting on each disc about the centre of mass O of the

object. Express the torque in the vector form in terms of

unit vectors $,$i j and $k in x y, and z-directions.

31. A small sphere rolls

down without slipping

from the top of a track

in a vertical plane. The

track has an elevated

section and a

horizontal part. The

horizontal part is 1.0

m above the ground level and the top of the track is 2.6 m

above the ground. Find the distance on the ground with

respect to the point B (which is vertically below the end of

the track as shown in figure) where the sphere lands. During

its flight as a projectile, does the sphere continue to rotate

about its centre of mass ? Explain. (1987, 7M)

Topic 4 Collision in Rotational Motion

Objective Questions I (Only one correct option)

1 Two coaxial discs, having moments of inertia I1 and
I1

2
are

rotating with respective angular velocities ω1 and
ω1

2
, about

their common axis. They are brought in contact with each

other and thereafter they rotate with a common angular

velocity. If E f and Ei are the final and initial total energies,

then ( )E Ef i− is (2019 Main, 10 April I)

(a) − I1 1
2

24

ω
(b) − I1 1

2

12

ω

(c)
3

8
1 1

2I ω (d)
I1 1

2

6

ω

2. Consider a body, shown in figure, consisting of two identical

balls, each of mass M connected by a light rigid rod. If an

impulse J Mv= is imparted to the body at one of its end,

what would be its angular velocity ? (2003)

(a) v L/ (b) 2v L/ (c) v L/3 (d) v L/4

3. A smooth sphere A is moving on a frictionless horizontal

plane with angular velocityωand centre of mass velocity v. It

collides elastically and head on with an identical sphere B at

rest. Neglect friction everywhere. After the collision their

angular speeds are ωA and ωB respectively. Then,
(1999, 2M)

(a) ω ωA B< (b) ω ωA B= (c) ω ωA = (d) ω ωB =

4. A cubical block of side a moving with velocity v on a

horizontal smooth plane as shown. It hits a ridge at point O.

The angular speed of the block after it hits O is (1999, 2M)

(a) 3 4v a/ (b) 3 2v a/

(c) 3 2/ a (d) zero

Objective Questions II (One or more correct option)

5. A thin ring of mass 2 kg and radius 0.5 m is rolling without

slipping on a horizontal plane with velocity 1 m/s. A small

ball of mass 0.1 kg, moving with velocity 20 m/s in the

opposite direction, hits the ring at a height of 0.75 m and goes

vertically up with velocity 10 m/s. Immediately after the

collision, (2011)

(a) the ring has pure rotation about its stationary CM

(b) the ring comes to a complete stop

(c) friction between the ring and the ground is to the left

(d) there is no friction between the ring and the ground
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6. A uniform bar of length 6 a

and mass 8 m lies on a smooth

horizontal table. Two point

masses mand 2mmoving in the

same horizontal plane with

speed 2v and v respectively,

strike the bar [as shown in the

figure] and stick to the bar

after collision. Denoting

angular velocity (about the centre of mass), total energy and

centre of mass velocity by ω, E and vc respectively, we have

after collision (1991)

(a) vc = 0 (b) ω = 3

5

v

a
(c) ω = v

a5
(d) E mv= 3

5

2

Analytical Answer Type Questions

7. A rod AB of mass M and length L is lying on a horizontal

frictionless surface. A particle of mass m travelling along the

surface hits the end A of the rod with a velocity v0 in a

direction perpendicular to AB. The collision is elastic. After

the collision, the particle comes to rest. (2000)

(a)  Find the ratio m M/ .

(b) A point P on the rod is at rest immediately after collision.

Find the distance AP.

(c) Find the linear speed of the point P a time πL v/ 3 0 after

the collision.

8. Two uniform rods A and B of length

0.6 m each and of masses 0.01 kg and 0.02 kg,

respectively are rigidly joined end to end. The

combination is pivoted at the lighter end, P as

shown in figure. Such that it can freely rotate

about point P in a vertical plane.

A small object of mass 0.05 kg, moving

horizontally, hits the lower end of the

combination and sticks to it. What should be

the velocity of the object, so that the system

could just be raised to the horizontal position? (1994, 6M)

9. A homogeneous rod AB of length L = 1.8 m and mass M is

pivoted at the centre O in such a way that it can rotate freely

in the vertical plane (figure ).

The rod is initially in the horizontal position. An insect S of

the same mass M falls vertically with speed v on the point C ,

midway between the points O and B. Immediately after

falling, the insect moves towards the end B such that the rod

rotates with a constant angular velocity ω. (1992, 8M)

(a) Determine the angular velocity ω in terms of v and L.

(b) If the insect reaches the end B when the rod has turned

through an angle of 90° , determine v.

10. A thin uniform bar lies on a frictionless horizontal surface

and is free to move in any way on the surface. Its mass is

0.16 kg and length is 3 m. Two particles, each of mass 0.08

kg are moving on the same surface and towards the bar in a

direction perpendicular to the bar one with a velocity of 10

m/s, and the other with 6 m/s, as shown in figure. The first

particle strikes the bar at points A and the other at point B.

Points A and B are at a distance of 0.5 m from the centre of

the bar. The particles strike the bar at the same instant of time

and stick to the bar on collision. Calculate the loss of kinetic

energy of the system in the above collision process. (1991)

Rotation 115

B

A

P

a

2m

v

2v

m

2a

c

Topic 5 Miscellaneous Problems

Objective Questions I (Only one correct option)

1 A uniform rod of length l is being rotated in a horizontal
plane with a constant angular speed about an axis passing
through one of its ends. If the tension generated in the rod due
to rotation isT x( )at a distance x from the axis, then which of
the following graphs depicts it most closely?

(2019 Main, 12 April I)

A

B

10 m/s

6 m/s

L/4

⊗

L/4L/2

v

S

A BCO

T x( )

l
x

(a) (b)

T x( )

x
l

T x( )

l
x

(c)

T x( )

l
x

(d)



2 A rectangular solid box of length 0.3 m

is held horizontally, with one of its sides

on the edge of a platform of height 5 m.

When released, it slips off the table in a

very short time τ = 0 01. s, remaining

essentially horizontal. The angle by

which it would rotate when it hits the

ground will be (in radians) close to (2019 Main, 8 April II)

(a) 0.02 (b) 0.3 (c) 0.5 (d) 0.28

3 A straight rod of length Lextends from x a= to x L a= + . The

gravitational force it exerts on a point mass m at x = 0, if the

mass per unit length of the rod is A Bx+ 2 , is given by

(2019 Main, 12 Jan I)

(a) Gm A
a L a

BL
1 1

+
−





−










(b) Gm A
a L a

BL
1 1

+
−





+










(c) Gm A
a a L

BL
1 1−

+






+










(d) Gm A
a a L

BL
1 1−

+






−










4 The magnitude of torque on a particle of mass 1 kg is 2.5

N-m about the origin. If the force acting on it is 1 N and the

distance of the particle from the origin is 5 m, then the angle

between the force and the position vector is (in radian)
(Main 2019, 11 Jan II)

(a)
π
8

(b)
π
4

(c)
π
3

(d)
π
6

5 A slab is subjected to two forces F1 and F2 of same

magnitude F as shown in the figure. Force F2 is in xy-plane

while force F1 acts along Z-axis at the point ( $ $ )2 3i j+ . The

moment of these forces about point O will be
(2019 Main, 11 Jan I)

(a) ( $ $ $ )3 2 3i j k+ − F (b) ( $ $ $ )3 2 3i j k− + F

(c) ( $ $ $ )3 2 3i j k− − F (d) ( $ $ $ )3 2 3i j k+ + F

6 A rigid massless rod of length 3l has two masses attached at

each end as shown in the figure. The rod is pivoted at point P

on the horizontal axis (see figure). When released from

initial horizontal position, its instantaneous angular

acceleration will be (2019 Main, 10 Jan II)

(a)
g

l13
(b)

g

l2
(c)

7

3

g

l
(d)

g

l3

7 To mop-clean a floor, a cleaning machine presses a circular

mop of radius R vertically down with a total force F and

rotates it with a constant angular speed about its axis. If the

force F is distributed uniformly over the mop and if

coefficient of friction between the mop and the floor isµ, the

torque applied by the machine on the mop is
(2019 Main, 10 Jan I)

(a)
2

3
µFR (b)

µFR

6
(c)

µ FR

3
(d)

µ FR

2

8 A rod of length 50 cm is pivoted at one end. It is raised such

that if makes an angle of 30° from the horizontal as shown

and released from rest. Its angular speed when it passes

through the horizontal (in rad s−1) will be

( )Take, msg = −10 2
(2019 Main, 09 Jan II)

(a)
30

2
(b) 30

(c)
20

3
(d)

30

2

9 Two masses m and
m

2
are connected at the two ends of a

massless rigid rod of length l. The rod is suspended by a thin

wire of torsional constant k at the centre of mass of the

rod-mass system (see figure). Because of torsional constant

k, the restoring torque is τ = kθ for angular displacementθ. If

the rod is rotated by θ0 and released, the tension in it when it

passes through its mean position will be (2019 Main, 9 Jan I)

(a)
2 0

2k

l

θ
(b)

k

l

θ0
2

(c)
3 0

2k

l

θ
(d)

k

l

θ0
2

2

10. A roller is made by joining together two corners at their

verticesO. It is kept on two rails AB andCD which are placed

asymmetrically (see the figure), with its axis perpendicular to

CD and its centre O at the centre of line joining AB and CD

(see the figure). It is given a light push, so that it starts rolling

with its centre O moving parallel to CD in the direction

shown. As it moves, the roller will tend to (2016 Main)
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(a) turn left (b) turn right

(c) go straight (d) turn left and right alternately

11. A hoop of radius r and mass m rotating with an angular

velocity ω0 is placed on a rough horizontal surface. The

initial velocity of the centre of the hoop is zero. What will be

the velocity of the centre of the hoop when it ceases to slip?
(2013 Main)

(a) rω0 4/ (b) rω0 3/ (c) rω0 2/ (d) rω0

12. Consider a disc rotating in the horizontal plane with a

constant angular speed ω about its centre O.

The disc has a shaded region on one side of the diameter and

an unshaded region on the other side as shown in the figure.

When the disc is in the orientation as shown, two pebbles P

and Q are simultaneously projected at an angle towards R.

The velocity of projection is in the y-z plane and is same for

both pebbles with respect to the disc.

Assume that (i) they land back on the disc before the disc has

completed 1/8 rotation, (ii) their range is less than half the

disc radius, and (iii) ω remains constant throughout. Then
(2012)

(a) P lands in the shaded region and Q in the unshaded

region

(b) P lands in the unshaded region and Q in the shaded

region

(c) both P and Q land in the unshaded region

(d) both P and Q land in the shaded region

13. Two identical discs of same radius R are rotating about their

axes in opposite directions with the same constant angular

speed ω.  The discs are in the same horizontal plane.

At time t = 0, the points P and Q are facing each other as

shown in the figure. The relative speed between the two

points P and Q is vr . In one time period ( )T of rotation of the

discs, vr as a function of time is best represented by (2012)

14. A thin uniform rod, pivoted at O, is rotating in the horizontal

plane with constant angular speed ω, as shown in the figure.

At time t = 0, a small insect starts from O and moves with

constant speed v with respect to the rod towards the other

end. It reaches the end of the rod at t T= and stops. The

angular speed of the system remains ω throughout. (2012)

The magnitude of the torque | |τ on the system about O, as a

function of time is best represented by which plot?

15. A block of base 10 cm × 10 cm and height 15 cm is kept on an

inclined plane. The coefficient of friction between them is

3. The inclination θ of this inclined plane from the

horizontal plane is gradually increased from 0°. Then,
(2009)

(a) at θ = °30 , the block will start sliding down the plane

(b) the block will remain at rest on the plane up to certain θ
and then it will topple

(c) atθ = °60 , the block will start sliding down the plane and

continue to do so at higher angles

(d) atθ = °60 , the block will start sliding down the plane and

on further increasing θ, it will topple at certain θ
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16. A particle moves in a circular path with decreasing speed.

Choose the correct statement. (2005)

(a) Angular momentum remains constant

(b) Acceleration ( )a is towards the centre

(c) Particle moves in a spiral path with decreasing radius

(d) The direction of angular momentum remains constant

17. A cubical block of side L rests on a rough horizontal surface

with coefficient of friction µ. A horizontal force F is applied

on the block as shown. If the coefficient of friction is

sufficiently high, so that the block does not slide before

toppling, the minimum force required to topple the block is
(2000)

(a) infinitesimal (b) mg /4

(c) mg / 2 (d) mg ( )1− µ

18. Two point masses of 0.3 kg and 0.7 kg are fixed at the ends of

a rod of length 1.4 m and of negligible mass. The rod is set

rotating about an axis perpendicular to its length with a

uniform angular speed. The point on the rod through which

the axis should pass in order that the work required for

rotation of the rod is minimum, is located at a distance of

(a) 0.42 m from mass of 0.3 kg (1995, S)

(b) 0.70 m from mass of 0.7 kg

(c) 0.98 m from mass of 0.3 kg

(d) 0.98 m from mass of 0.7 kg

19. A tube of length L is filled completely with an in-

compressible liquid of mass M and closed at both the ends.

The tube is then rotated in a horizontal plane about one of its

ends with a uniform angular velocityω . The force exerted by

the liquid at the other end is (1992, 2M)

(a)
M Lω2

2
(b) M Lω2 (c)

M Lω2

4
(d)

M Lω2 2

2

Objective Question II (One or more correct option)

20. The potential energy of mass m at a distance r from a fixed

point O is given by V r kr( ) /= 2 2, where k is a positive

constant of appropriate dimensions. This particle is moving

in a circular orbit of radius R about the point O. If v is the

speed of the particle and L is the magnitude of its angular

momentum about O, which of the following statements is

(are) true ? (2018 Adv.)

(a) v
k

m
R=

2
(b) v

k

m
R=

(c) L mk R= 2 (d) L
mk

R=
2

2

21. Consider a body of mass 10. kg at rest at the origin at time

t = 0. A force F i j= +( $ $ )α βt is applied on the body, where

α = −10. Ns
1 and β = 10. N. The torque acting on the body

about the origin at time t =1.0s is τ. Which of the following

statements is (are) true ? (2108 Adv.)

(a) | |τ = 1

3
N - m

(b) The torque τ is in the direction of the unit vector + $k

(c) The velocity of the body at t = 1s is v i j= + −1

2
2 1($ $ ) ms

(d) The magnitude of displacement of the body at t = 1s is
1

6
m

22. A rigid uniform bar AB of length L is slipping from its

vertical position on a frictionless floor (as shown in the

figure). At some instant of time, the angle made by the bar

with the vertical is θ. Which of the following statements

about its motion is/are correct? (2017 Adv.)

(a) Instantaneous torque about the point in contact with the

floor is proportional to sinθ
(b) The trajectory of the point A is parabola

(c) The mid-point of the bar will fall vertically downward

(d) When the bar makes an angle θ with the vertical, the

displacement of its mid-point from the initial position is

proportional to ( cos )1− θ

Matching Type Questions

23. In the List-I below, four different paths of a particle are

given as functions of time. In these functions, α and β are

positive constants of appropriate dimensions and α β≠ . In

each case, the force acting on the particle is either zero or

conservative. In List-II, five physical quantities of the

particle are mentioned: p is the linear momentum, L is the

angular momentum about the origin, K is the kinetic energy,

U is the potential energy and E is the total energy. Match

each path in List-I with those quantities in List-II, which are

conserved for that path. (2018 Adv.)

List-I List-II

P. r i j( )t t t= +α β 1. p

Q. r i( ) cost t= α ω + β ωsin t j 2. L

R. r i( ) (cost t= α ω + sin ω t j ) 3. K

S. r i j( )t a t t= + β
2

2
4. U

5. E

(a) P → 1, 2, 3, 4, 5; Q → 2, 5; R → 2, 3, 4, 5; S → 5

(b) P → 1, 2, 3, 4, 5; Q → 3, 5; R → 2, 3, 4, 5; S → 2, 5

(c) P → 2, 3, 4;         Q → 5;     R → 1, 2, 4;     S → 2, 5

(d) P → 1, 2, 3, 5;     Q → 2, 5; R → 2, 3, 4, 5; S → 2, 5

L

F

θ

O

L

B



Passage Based Questions

Passage 1
One twirls a circular ring (of mass M and radius R) near the

tip of one’s finger as shown in Figure 1. In the process the

finger never loses contact with the inner rim of the ring. The

finger traces out the surface of a cone, shown by the dotted

line. The radius of the path traced out by the point where the

ring and the finger is in contact is r. The finger rotates with an

angular velocity ω0. The rotating ring rolls without slipping

on the outside of a smaller circle described by the point

where the ring and the finger is in contact (Figure 2). The

coefficient of friction between the ring and the finger isµ and

the acceleration due to gravity is g.

24. The total kinetic energy of the ring is (2017 Adv.)

(a) M R rω0
2 2( )− (b)

1

2
0
2 2M R rω ( )−

(c) M Rω0
2 2 (d)

3

2
0
2 2M R rω ( )−

25. The minimum value of ω0 below which the ring will drop

down is (2017 Adv.)

(a)
g

R r2µ ( )−
(b)

3

2

g

R rµ ( )−

(c)
g

R rµ ( )−
(d)

2g

R rµ ( )−

Passage 2

The general

motion of a rigid

body can be

considered to be

a combination of

(i) a motion of its

centre of mass about an axis, and (ii) its motion about an

instantaneous axis passing through the centre of mass. These

axes need not be stationary. Consider, for example, a thin

uniform disc welded (rigidly fixed) horizontally at its rim to a

massless stick, as shown in the figure. When the disc-stick

system is rotated about the origin on a horizontal frictionless

plane with angular speed ω, the motion at any instant can be

taken as a combination of (i) a rotation of the centre of mass of

the disc about the Z-axis, and (ii) a rotation of the disc through

an instantaneous vertical axis passing through its centre of

mass (as is seen from the changed orientation of points P and

Q). Both these motions have the same angular speed ω in this

case.

Now, consider two similar systems as shown in the figure :

Case (a) the disc with its face vertical and parallel to x-z

plane; Case (b) the disc with its face making an angle of 45°

with x-y plane and its horizontal diameter parallel to X-axis.

In both the cases, the disc is welded at point P, and the

systems are rotated with constant angular speed ω about the

Z-axis.

26. Which of the following statements regarding the angular

speed about the instantaneous axis (passing through the

centre of mass) is correct? (2012)

(a) It is 2ω for both the cases

(b) It is ω for case (a); and
ω
2

for case (b)

(c) It is ω for case (a); and 2ω for case (b)

(d) It is ω for both the cases

27. Which of the following statements about the instantaneous

axis (passing through the centre of mass) is correct? (2012)

(a) It is vertical for both the cases (a) and (b)

(b) It is vertical for case (a); and is at 45° to the x-z plane and

lies in the plane of the disc for case (b)

(c) It is horizontal for case (a); and is at 45° to the x-z plane

and is normal to the plane of the disc for case (b)

(d) It is vertical for case (a); and is at 45° to the x-z plane and

is normal to the plane of the disc for case (b)

Passage 3

Two discs A and B are mounted coaxially on a vertical axle.

The discs have moments of inertia I and 2I respectively about

the common axis. Disc A is imparted an initial angular

velocity 2ω using the entire potential energy of a spring

compressed by a distance x1. Disc B is imparted an angular

velocity ω by a spring having the same spring constant and

compressed by a distance x2. Both the discs rotate in the

clockwise direction.

28. The ratio
x

x

1

2

is (2007, 4M)

(a) 2 (b) 1/2 (c) 2 (d)
1

2

29. When disc B is brought in contact with disc A, they acquire a

common angular velocity in time t. The average frictional

torque on one disc by the other during this period is
(2007, 4M)

(a)
2

3

I

t

ω
(b)

9

2

I

t

ω

(c)
9

4

I

t

ω
(d)

3

2

I

t

ω
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30. The loss of kinetic energy during the above process is
(2007, 4M)

(a)
Iω2

2
(b)

Iω2

3

(c)
Iω2

4
(d)

Iω2

6

Integer Answer Type Question

31. A uniform circular disc of mass

1.5 kg and radius 0.5 m is

initially at rest on a horizontal

frictionless surface. Three

forces of equal magnitude

F = 0.5 N are applied

simultaneously along the three

sides of an equilateral triangle

XYZ with its vertices on the

perimeter of the disc (see figure). One second after applying

the forces, the angular speed of the disc in rad s
−1 is (2012)

Fill in the Blanks

32. A rod of weight W is supported by two parallel knife edges A

and B and is in equilibrium in a horizontal position. The

knives are at a distance d from each other. The centre of mass

of the rod is at distance x from A. The normal reaction on A is

……… and on B is ……… . (1997, 2M)

33. A uniform cube of side a and mass m rests on a rough

horizontal table. A horizontal force F is applied normal to

one of the faces at a point that is directly above the centre of

the face, at a height 3a/4 above the base. The minimum value

of F for which the cube begins to tip about the edge is ………

(Assume that the cube does not slide). (1984, 2M)

True / False

34. A triangular plate of uniform thickness and density is made

to rotate about an axis perpendicular to the plane of the paper

and (a) passing through A, (b) passing through B, by the

application of the same force, F, at C (mid-point of AB) as

shown in the figure. The angular acceleration in both the

cases will be the same. (1985, 3M)

Analytical & Descriptive Questions

35. A rod of length L and mass M is hinged at point O. A small

bullet of mass m hits the rod as shown in the figure. The

bullet gets embedded in the rod. Find angular velocity of the

system just after impact. (2005, 2M)

36. Three particles A B, and C ,

each of mass m, are

connected to each other by

three massless rigid rods to

form a rigid , equilateral

triangular body of side l.

This body is placed on a

horizontal frictionless table

( )x y- plane and is hinged to

it at the point A, so that it can move without friction about the

vertical axis through A (see figure). The body is set into

rotational motion on the table aboutA with a constant angular

velocity ω . (2002, 5M)

(a) Find the magnitude of the horizontal force exerted by the

hinge on the body.

(b) At time T , when the side BC is parallel to the X-axis, a

force F is applied on B along BC (as shown). Obtain the

x-component and the y-component of the force exerted

by the hinge on the body, immediately after time T .

37. Two heavy metallic plates

are joined together at 90° to

each other. A laminar sheet

of mass 30 kg is hinged at

the line AB joining the two

heavy metallic plates. The

hinges are frictionless. The

moment of inertia of the

laminar sheet about an axis

parallel to AB and passing through its centre of mass is

1.2 kg -m2. Two rubber obstacles Pand Q are fixed, one on

each metallic plate at a distance 0.5 m from the line AB. This

distance is chosen, so that the reaction due to the hinges on

the laminar sheet is zero during the impact. Initially the

laminar sheet hits one of the obstacles with an angular

velocity 1 rad/s and turns back. If the impulse on the sheet

due to each obstacle is 6 N-s. (2001, 10M)

(a) Find the location of the centre of mass of the laminar

sheet from AB.

(b) At what angular velocity does the laminar sheet come

back after the first impact ?

(c) After how many impacts, does the laminar sheet come to

rest ?

38. A uniform circular disc has

radius R and mass m.

A particle, also of mass m, is

fixed at a point A on the

edge of the disc as shown in

the figure. The disc can

rotate freely about a

horizontal chord PQ that is

at a distance R /4 from the centreC of the disc. The line AC is

perpendicular to PQ. Initially the disc is held vertical with

the point A at its highest position. It is then allowed to fall, so

that it starts rotation about PQ. Find the linear speed of the

particle as it reaches its lowest position. (1998, 8M)
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39. A uniform disc of mass m and radius R is projected

horizontally with velocity v0 on a rough horizontal floor, so

that it starts off with a purely sliding motion at t = 0. After t0

seconds, it acquires a purely rolling motion as shown in

figure. (1997 C, 5M)

(a) Calculate the velocity of the centre of mass of the disc at t0.

(b) Assuming the coefficient of friction to be µ, calculate t0.
Also calculate the work done by the frictional force as a
function of time and the total work done by it over a time
t much longer than t0.

40. A rectangular rigid fixed block has a long horizontal edge. A

solid homogeneous cylinder of radius R is placed

horizontally at rest with its length parallel to the edge such

that the axis of the cylinder and the edge of the block are in

the same vertical plane as shown in figure. There is sufficient

friction present at the edge, so that a very small displacement

causes the cylinder to roll off the edge without slipping.

Determine (1995, 10M)

(a) the angle θc through which the cylinder rotates before it

leaves contact with the edge,

(b) the speed of the centre of mass of the cylinder before

leaving contact with the edge and

(c) the ratio of the translational to rotational kinetic energies

of the cylinder when its centre of mass is in horizontal

line with the edge.

41. A block X of mass 0.5 kg is held by a long massless string on

a frictionless inclined plane of inclination 30° to the

horizontal. The string is wound on a uniform solid

cylindrical drumY of mass 2 kg and of radius 0.2 m as shown

in figure.

The drum is given an initial angular velocity such that the

block X starts moving up the plane. (1994, 6M)

(a)  Find the tension in the string during the motion.

(b) At a certain instant of time, the magnitude of the angular

velocity ofY is 10 rads−1. Calculate the distance travelled

by X from that instant of time until it comes to rest.

42. A carpet of mass M made of inextensible material is rolled

along its length in the form of a cylinder of radius R and is

kept on a rough floor. The carpet starts unrolling without

sliding on the floor when a negligibly small push is given to

it. Calculate the horizontal velocity of the axis of the

cylindrical part of the carpet when its radius reduces to R / .2
(1990, 8M)
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Answers

Topic 1

1. (c) 2. (d) 3. (d) 4. (d)

5. (*) 6. (b) 7. (a) 8. (c)

9. (b) 10. (a) 11. (a) 12. (b)

13. (d) 14. (d) 15. (b) 16. (a)

17. (a) 18. (a) 19. (d) 20. (a)

21. (a, b, c) 22. (3) 23. (9) 24. 4 8 2. Ma

Topic 2

1. (c) 2. (d) 3. (d)

4. (d) 5. (c) 6. (c) 7. (b)

8. (a) 9. (c) 10. (b) 11. (c)

12. (b) 13. (b) 14. (c) 15. (a, b, c)

16. (c) 17. (b) 18. 4 19. (8)

20. (6) 21. −3 22.
M

M m

ω0

6+

23. F 24.
mv

g

0
3

2 2
in a direction perpendicular to paper inwards

Topic 3

1. (b) 2. (b) 3. (c) 4. (b)

5. (b) 6. (b)

7. (b) 8. (d) 9. (d) 10. (d)

11. (a) 12. (b) 13. (d) 14. (d)

15. (d) 16. (c) 17. (a, c) 18. (c, d)

19. (a, b) 20. (b, c) 21. (c, d) 22. (0.75)

23.
mg

6
, up

24.
1

3

2MRAω 25. F 26. 7 27. 3.6

28.
2

3
g sin θ 29. a

F

m m
CM =

+
4

3 81 2

, a
F

m m
aplank CM=

+
=8

3 8
2

1 2

(b)
3

3 8 3 8

1

1 2

1

1 2

Fm

m m

Fm

m m+ +
,

30. (a) 6$i (b) 0 6. ( $ $)k j− , 0 6. ( $ $ )− −j k , 0.85 N-m

31. 2.13 m, yes

Topic 4

1. (a)

2. (a) 3. (c) 4. (a) 5. (a, c)

6. (a, c, d) 7. (a)
1

4
(b)

2

3
L (c)

v0

2 2
8. 6.3 m/s

9. (a)
12

7

v

L
(b) 3 5 1. ms− 10. 2.72 J

Topic 5

1. (b) 2. (c) 3. (c) 4. (d)

5. (b) 6. (a) 7. (a) 8. (b)

9. (b) 10. (a)

11. (c) 12. (*) 13. (a) 14. (b)

15. (b) 16. (d) 17. (c) 18. (c)

19. (a) 20. (b,c) 21. (a,c) 22. (a,c,d)

23. (a) 24. Not clear 25. (c)

26. (d) 27. ( a) 28. (c) 29. (a)

30. (b) 31. (2) 32.
d x

d
W

xW

d

−



 ,

33.
2

3
mg 34. F 35.

3

3

mv

L m M( )+

36. (a) 3 2mlω (b) ( ) , ( )F
F

F mlx ynet net= − =
4

3 2ω

37. (a) 0.1 m (b) 1 rad/s (c) sheet will never come to rest

38. 5gR

39. (a)
2

3
0v (b)

v

g

0

3 µ
, For t t≤ 0,W

m gt
gt vf = −µ µ

2
3 2 0[ ],

−mv0
2

6

40. (a) θ = −cos 1 4

7
(b)

4

7

gR
(c) 6

41. (a) 1.63 N (b) 1.22 m 42. v
Rg= 14

3



Topic 1 Moment of Inertia

1. Key Idea Radius of gyration K of any structure is given by

I MK=
2

or K
I

M
=

To find K, we need to find both moment of
inertia I and mass M of the given structure.

Given, variation in mass per unit area (surface mass density),

σ σ= 0

r
…(i)

Calculation of Mass of Disc

Let us divide whole disc in small area elements, one of them

shown at r distance from the centre of the disc with its width

as dr.

Mass of this element is

dm dA= ⋅σ

⇒ dm
r

rdr= ×σ π0 2 [from Eq. (i)] …(ii)

Mass of the disc can be calculated by integrating it over the

given limits of r,

dm dr

M

a

b

0

0 2∫ ∫= × ×σ π

⇒ M b a= −σ π0 2 ( ) …(iii)

Calculation of Moment of Inertia

I r dm r
r

rdr

M

a

b

= = ⋅ ×∫ ∫2

0

2 0 2
σ π = σ π0

22 r dr

a

b

∫ =








σ π0

3

2
3

r

a

b

⇒ I b a= −1

3
20

3 3σ π[ ] …(iv)

Now, radius of gyration,

K
I

M
= =

−

−

2

3

2

0 3 3

0

πσ

πσ

( )

( )

b a

b a

⇒ K
b a

b a
= −

−
1

3

3 3( )

As we know, b a b a b a ab3 3 2 2− = − + +( ) ( )

∴ K b a ab= + +1

3

2 2( )

or K
a b ab= + +( )2 2

3

2. The given situation is shown in the figure given below

Density of given sphere of radius R is

ρ = =Mass

Volume

M

R
4

3

3π

Let radius of sphere formed from second part is r, then

mass of second part = volume × density
1

8

4

3 4

3

3

3

M r
M

R

= ×π
π

∴ r
R3

3

8
= ⇒ r

R=
2

Now, I1 = moment of inertia of disc (radius 2R and mass
7

8
M ) about its axis

= ×Mass (Radius)2

2
=

×7

8
2

2

2M R( )

= 7

4

2MR

and I2 = moment of inertia of sphere

(radius
R

2
and mass

1

8
M ) about its axis

= × ×2

5

2Mass (Radius) = × × 





2

5

1

8 2

2

M
R = MR2

80

∴ Ratio
I

I

MR

MR

1

2

2

2

7

4
1

80

= = 140

3. Given, Surface mass density, σ = kr2

So, mass of the disc can be  calculated by considering

small element of area 2πrdr on it and then integrating it for

complete disc, i.e.

Hints & Solutions

2R

Disc (radius= 2 )R
Solid sphere
(radius = )r

Solid sphere

7

8
M

1

8
M

R M

r

r

a

b

dm

dr

r

dr

O



dm dA rdr= = ×σ σ π2

dm M kr rdr
R

∫ ∫= = ( )2

0
2π

⇒ M k
R

kR= =2
4

1

2

4
4π π … (i)

Moment of inertia about the axis of the disc,

I dI dmr dAr= = =∫ ∫∫ 2 2σ

= ∫ kr rdr r
R 2 2

0
2( )π

⇒ I k r dr
kR kRR

= = =∫2
2

6 3

5

0

6 6

π π π
… (ii)

From Eqs. (i) and (ii), we get

I MR= 2

3

2

4. Given, kinetic energy = kθ2

We know that, kinetic energy of a rotating body about its axis

= 1

2

2Iω

where, I is moment of inertia and ω is angular velocity.

So,
1

2

2 2I kω θ= or ω θ2
22= k

I

⇒ ω θ= 2k

I
… (i)

Differentiating the above equation w.r.t. time on both sides,

we get

d

dt

k

I

d

dt

ω θ= ⋅2 = ⋅2k

I
ω Qω θ=





d

dt

∴ Angular acceleration,

α ω ω θ= = ⋅ = ⋅d

dt

k

I

k

I

k

I

2 2 2
[using Eq. (i)]

or α θ= 2k

I

Alternate Solution

As, ω θ2
22= k

I

⇒ 2
2

2ω ω θ θd

dt

k

I

d

dt
= ⋅ or ω ω θ θd

k

I
d= 2

ω ω
θ

α θd

d

k

I
( )= = ⋅2

or α θ= 2k

I

5. Consider an elementary ring of thickness dx and radius x.

Moment of inertia of this ring about a perpendicular axes

through centre is

dI dm xc = ⋅ 2 = ρ ⋅0
22x x dx x( )π = ρ2 0

4π x dx

Moment of inertia of this elementary ring about a

perpendicular axes at a point through edge, (by parallel axes

theorem)

dI dmx dmR= +2 2

= ρ + ρ2 20
4

0
2 2π πx dx R x dx

Moment of inertia of complete disc is

I dI
R

= ∫0
= ρ + ρ∫ ∫2 2

0
0

4

0
0

2 2R R
x dx R x dxπ π

= ρ + ρ2

5

2

3

0
5

0
5π πR R = 16

15

0
5πρ R

∴ a = 16

15
(No option matches)

6. Moment of inertia of a solid sphere about an axis through its

centre of mass is

I MRC = 2

5

2

Moment of inertia about a parallel axis at a distance x from

axis through its COM is

I I MxC= + 2 (by parallel axis theorem)

So graph of I versus x is parabolic are shown

7. Moment of inertia of hollow cylinder about its axis is

I
M

R R1 1
2

2
2

2
= +( )

where, R1 = inner radius and
R2 = outer radius.

Moment of inertia of thin hollow cylinder of radius R about

its axis is.

I MR2
2=

Given, I I1 2= and both cylinders have same mass (M).

So, we have

M
R R MR

2
1
2

2
2 2( )+ =
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( ) /10 20 22 2 2+ = R

R2 250= = 15.8

R ≈ 16 cm

8 For disc D1, moment of inertia across axis OO′ will be

I MR1
21

2
= …(i)

For discs D2 and D3, OO ′ is an axis parallel to the diameter of

disc. Using parallel axis theorem,

I I I Md2 3
2= = +diameter …(ii)

Here, I MRdiameter = 1

4

2

and d R=

∴ I I MR MR MR2 3
2 2 21

4

5

4
= = + =

Now, total MI of the system

I I I I= + +1 2 3 = + ×1

2
2

5

4

2 2MR MR = 3 2MR

9 (b) Suppose the mass of the ∆ABC be ‘M ’ and length of the

side be ‘l’.

When the ∆DEF is being removed from it, then the mass of

the removed ∆ will be ‘M / 4’ and length of its side will be

‘l/2’ as shown below

Since we know, moment of inertia of the triangle about the

axis, passing through its centre of gravity is,

I kml= 2, where k is a constant.

Then for ∆DEF , moment of inertia of the triangle about the

axis,

I k
M l= 









4 2

2

= kMl2

16
…(i)

Moment of inertia of ∆ABC is

I kMl0
2= …(ii)

The moment of inertia of the remaining part will be

I I I′ = −0 = −kMl
kMl2

2

16
[Qusing Eqs. (i) and (ii)]

= 15

16

2kMl
or I I′ = 15

16
0

10 Key Idea This problem will be solved by applying parallel axis
theorem, which states that moment of inertia of a rigid body
about any axis is equals to its moment of inertia about a parallel
axis through its centre of mass plus the product of the mass of
the body and the square of the perpendicular distance between
the axis.

We know that moment of inertia (MI) about the principle

axis of the sphere is given by

I MRsphere = 2

5

2 … (i)

Using parallel axis theorem, moment of inertia about the

given axis in the figure below will be

I MR M R1
2 22

5
2= + ( )

I MR1
222

5
= … (ii)

Considering both spheres at equal distance from the axis,

moment of inertia due to both spheres about this axis will be

2 1I = ×2 22 5 2/ MR

Now, moment of inertia of rod about its perpendicular

bisector axis is given by

I ML2 = 1

12

2

Here, given that L R= 2
FB C

D E

A

l

l/2
l/2

G

l/2

R

D3

Mass=M

R

O
R

D1

Mass=M

O′

R R

2 R

Principle axis Given axis

R R



∴ I M R MR2 = =1

12
2

1

3

2 2( ) … (iii)

So, total moment of inertia of the system is

I I I= +2 1 2 = × +2
22

5

1

3

2 2MR MR

⇒ I MR MR= +





=44

5

1

3

137

15

2 2

11. From theorem of parallel axis,

I I= + 2
cm 7 3M R( )

= + × +




















MR MR
M R

2 2
2

2
6

2
2( ) + =7 3

181

2

2
2

M R
MR

( )

12. I I IRemaining Total Cavity= −

⇒ I
MR M R= − 











9

2 2 3

2 3

+ 










=M

R
MR

2

3
4

2
2

13. MI of a solid cylinder about its perpendicular bisector of

length is

I M
l R= +











2 2

12 4

⇒ I
mR ml m

l

ml= + = +
2 2 2 2

4 12 4 12πρ
[ ]Qρπr l m2 =

For I to be maximum,

dI

dl

m

l

ml= − 





+ =
2

24

1

6
0

πρ

⇒ m ml2 3

4 6µπρ
= ⇒ l

m3 3

2
=

πρ

⇒ l
m= 











3

2

1 3 1 3/ /

πρ

ρ
π

= m

R l2
⇒ R

m

l

2 =
πρ

⇒ R
m

m

m2
1 3 1 3 2 3

2

3

2

3
= 











= 









πρ

πρ
πρ

/ / / 1 3/

⇒ R
m= 









πρ

1 3 1 6
2

3

/ /

l

R

m

m

=

























3

2

2

3

1 3 1 3

1 3 1 6

/ /

/ /

πρ

πρ

= 





+ 





3

2

3

2

1 3 1 6/ /

∴ l

R
= 3

2

14. As the rod rotates in vertical plane so a torque is acting on it,

which is due to the vertical component of weight of rod.

Now, Torque τ = force × perpendicular distance of line of

action of force from axis of rotation

= ×mg
l

sin θ
2

Again, Torque, τ = Iα

Where, I = moment of inertia = ml2

3

[Force and Torque frequency  along axis of rotation

passing through in end]

α = angular acceleration

∴ mg
l ml

sin θ α× =
2 3

2

∴ α = 3

2

g

l

sin θ

15. Maximum possible volume of cube will occur when

3 2a R= (a = side of cube)

∴ a R= 2

3

Now, density of sphere, ρ
π

= M

R
4

3

3

Mass of cube, m = (volume of cube)(ρ) = ( )( )a3 ρ

= 





















= 





2

3 4

3

2

3

3

3

R
m

R

M

π π

Now, moment of inertia of the cube about the said axis is

I
ma=

2

6
=













2

3

2

3

2

π
σ

M R

= 4

9 3

2MR

π

16.
2

5

1

2

2 2 2MR Mr Mr= +

or
2

5

3

2

2 2MR Mr=

∴ r R= 2

15
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mg sin θ

mg

θθ
m

g
co

s
θ

l/2

l/2

Initial condition At any time t



17. I I Iremaining whole removed= −

or I M R m
R

m
R= − 





+ 

















1

2
9

1

2 3

1

2

2

3

2
2 2

( ) ( ) …(i)

Here, m
M

R

R
M= × 





=9

32

2

π
π

Substituting in Eq. (i), we have

I MR= 4 2

18. Mass of the whole disc = 4M

Moment of inertia of the disc about the given axis

= =1

2
4 22 2( )M R MR

∴ Moment of inertia of quarter section of the disc

= 1

4
2 2( )MR = 1

2

2MR

19. Mass of the ring M L= ρ . Let R be the radius of the ring, then

L R= 2π

or R
L=

2π
Moment of inertia about an axis passing through O and

parallel to XX ' will be

I MR0
21

2
=

Therefore, moment of inertia about XX ′ (from parallel axis

theorem) will be given by

I MR MRXX ′ = +1

2

2 2 = 3

2

2MR

Substituting values of M Rand

I L
L L

XX ′ =








 =3

2 4

3

8

2

2

3

2
( )ρ

π
ρ
π

20. A B′ ′ AB and C D′ ′ ⊥ CD

From symmetry I IAB A B= ' '

and I ICD C D= ' '

From theorem of perpendicular axes,

I I I I IZZ AB A B CD C D= + = +′ ′ ' '

= =2 2I IAB CD

I IAB CD=

Alternate

The relation between I AB and ICD should be true for all

values of θ
At θ = =0, I ICD AB

Similarly, at θ π= =/ ,2 I ICD AB (by symmetry)

Keeping these things in mind, only option (a) is correct.

21. Since, it is a square lamina

I I3 4=
and I I1 2= (by symmetry)

From perpendicular axes theorem,

Moment of inertia about an axis perpendicular to square plate

and passing from O is

I I I I Io = + = +1 2 3 4

or I I Io = =2 22 3

Hence, I I2 3=
Rather we can say I I I I1 2 3 4= = =
Therefore, Io can be obtained by adding any two i.e.

I I I I Io = + = +1 2 1 3

= + = +I I I I1 4 2 3

= + = +I I I I2 4 3 4

22. T = Total portion

R = Remaining portion and

C = Cavity and let σ = mass per unit area.

Then, m R RT = =π σ π σ( )2 42 2

m R RC = =π σ π σ( )2 2

For I
P

I I IR T C= −

= 3

2
2 2m RT ( ) − +





1

2

2 2m R m rC C

= 3

2
4 42 2( ) ( )π σR R − +





1

2
52 2 2( ) ( ) ( )π σ π σR R R

= ( )18.5 π σR4

For I
O

I I IR T C= −

= −1

2
2

3

2

2 2m R m RT C( )

= −1

2
4 4

3

2

2 2 2 2( ) ( ) ( ) ( )π σ π σR R R R = 6.5 π σR4

∴ I

I

R

R

P

O

= =18.5

6.5
2.846

π σ
π σ

4

4

Therefore, the nearest integer is 3.
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C

C'

B

A'
D

D'

θ

B'

A

r

2R

R

r = 5R√
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23. r
d= =
2

5

2
cm = × −5

2
10 2 m ⇒ m = 0.5 kg

a = 4 cm = × −4 10 2 m

I I I I IXX = + + +1 2 3 4

= + 

















+2

5 2

2

5

2

2

2mr m
a

mr

+ + 

















+2

5 2

2

5

2

2

2mr m
a

mr

Substituting  the values, we get

I XX = × −9 10 4 2kg - m ∴ N = 9

24. Assuming the lamina to be in x-y plane.

From, the perpendicular axis theorem,

I I Ix y z+ =
but I Ix y= (by symmetry)

and I Maz = 1.6 2 (given)

∴ I
I

x
z=
2

= 0 8. Ma2

Now, from the parallel  axis theorem,

I I M aAB x= + ( )2 2 = +0.8 Ma Ma2 24 = 4.8 Ma2

Topic 2 Angular Momentum and its
Conservation

1. Position of particle is, r i j= −2 3 2t t$ $

where, t is instantaneous time.

Velocity of particle is

v
r

i j= = −d

dt
t2 6$ $

Now, angular momentum of particle with respect to origin

is given by

L r v= ×m( )

= − × −m t t t{( $ $ ) ( $ $ )}2 3 2 62i j i j

= − × − ×m t t( ($ $ ) ($ $ ))12 62 2i j j i

As, $ $ $ $i i j j× = × = 0

⇒ L k k= − +m t t( $ $ )12 62 2

As, $ $ $i j k× = and $ $ $j i k× = −
⇒ L k= − m t( ) $6 2

So, angular momentum of particle of mass 2 kg at time

t = 2 s is

L k= − × ×( ) $2 6 22 = − 48 $k

2. As there is no external torque on system.

∴ Angular momentum of system is conserved.

⇒ I Ii i f fω ω=
Initially,

Finally,

⇒ ML2

0
12

0⋅ +ω = + 















ML
m

L2 2

12
2

2
( ) ω

So, final angular speed of system is

⇒ ω
ω ω=

⋅

+









=
+

ML

ML mL

M

M m

2

0

2 2

012

6

12

6

3. The given figure is shown below as

As friction is absent, energy at A = energy at B

⇒ 1

2

1

2

2 2mv mgh mvA B+ =

⇒ v gh vA B
2 22+ =

or vB
2 25 2 10 10 225= + × × =( )

⇒ vB = 15 ms−1

O

2a

A By

x

X

X

a

1 2

4 3

a/ 2√

L

ω
M

m m

ω

m m

M, L

vA

A

B
vB

O

h=
m10

a= m10
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Angular momentum about point ‘O’,

= mv rB B

= × × ×−20 10 15 203 = 6 kg-m2 s−1

4. Let the other mass at this instant is at a distance of x from

the centre O. Applying law of conservation of angular

momentum, we have I I1 1 2 2ω ω=

∴

( )( )MR MR
M

R
M

x2 2
2

2

8

3

5 8

8

9
ω ω= + 





+


















Solving this equation, we get x R= 4

5
.

NOTE If we take identical situations with both point masses,

then answer will be (c). But in that case, angular momentum

is not conserved.

5. Angular momentum of the pendulum about the suspension

point O is

Then, v can be resolved into two components, radial

component rrad and tangential component rtan . Due to

vrad , L will be tangential and due to vtan , L will be radially

outwards as shown. So, net angular momentum will be as

shown in figure whose magnitude will be constant

(| | )L mvl= . But its direction will change as shown in the

figure.

L r v= ( )m ×
where, r = radius of circle.

6. Angular momentum of a particle about a point is given by

L r p r v= × = ×m ( )

For LO

| |L = ( sin )mvr θ = °m R R( ) ( ) sinω 90 = constant

Direction of LO is always upwards. Therefore, complete

LO is constant, both in magnitude as well as direction.

For LP

| |LP = ( sin )mvr θ = °( ) ( ) ( ) sinm R lω 90 = ( )mRlω
Magnitude of LP will remain constant but direction of LP keeps

on changing.

7. From conservation of angular momentum ( )I ω =constant ,

angular velocity will remain half. As, K I= 1

2

2ω

The rotational kinetic energy will become half.

8. In uniform circular motion, the only force acting on the particle

is centripetal ( towards centre). Torque of this force about the

centre is zero. Hence, angular momentum about centre remain

conserved.

9. Since, there is no external torque, angular momentum will

remain conserved. The moment of inertia will first decrease till

the tortoise moves from A to C and then increase as it moves

from C Dand . Therefore, ω will initially increase and then

decrease.

Let R be the radius of platform, m the mass of disc and M is the

mass of platform.

Moment of inertia when the tortoise is at A

I mR
MR

1
2

2

2
= +

and moment of inertia when the tortoise is at B

I mr
MR

2
2

2

2
= +

Here, r a R a vt2 2 2 2 2= + − −[ ]

From conservation of angular momentum

ω ω0 1 2I t I= ( )

Substituting the values, we can see that variation of ω ( )t is

non-linear.

10. Net external torque on the system is zero. Therefore, angular

momentum is conserved. Force acting on the system are only

conservative. Therefore, total mechanical energy of the system

is also conserved.

11. From the theorem

L L r v0 = + ×CM M ( ) …(i)

O O

V

m

l

L tan

O

L L

vrad

v tan

L rad

90°
r

v

O

LO

R

v

l

LP

P

R
r

A DB C

a

O

r

vt

BO

M

x

y

v = Rw

(a)
O

(b)
x

Y

v
ω
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We may write

Angular momentum about O = Angular momentum about

CM + Angular momentum of CM about origin

∴ L I MRv0 = +ω

= +1

2

2MR MR Rω ω( ) = 3

2

2MR ω

NOTE That in this case [ Figure (a) ] both the terms in Eq. (i),

i.e. and M ( )CML r v× have the same direction Ä. That is why, we

have used L I MRv0 = +ω . We will  use L0 = I ω ~ MRv if they are

in opposite direction as shown in figure (b).

12. | |v = =v constant and | |r = r (say)

Angular momentum of the particle about origin O will be given

by

L r p r v= × = ×m( )

or | | sinL = =L mrv θ = =mv r mvh( sin )θ
Now, m,v and h all are constants.

Therefore, angular momentum of particle about origin will

remain constant. The direction of r v× also remains the same

(negative z).

NOTE Angular momentum of a particle moving with constant

velocity about any point is always constant. e.g. Angular

momentum of the particle shown in figure about origin O will be

L mvh= = constant

13. L m
v

r= ⊥
2

Here, r h
v

g

v

g
⊥ = = ° =

2 2 245

2 4

s ni

∴ L m
v v

g
= 















2 4

2

= mv

g

3

4 2

14. I I1 1 2 2ω ω=

∴ ω ω2
1

2

= I

I
=

+











Mr

Mr mr

2

2 22
ω

=
+







M

M m2
ω

15. (a) τ = ×A L

i.e.
d

dt

L
A L= ×

This relation implies that
d

dt

L
is perpendicular to both A

and L.

(c) Here , L L⋅ =L2

Differentiating w.r.t. time, we get

L
L L

L. .
d

dt

d

dt
L

dL

dt
+ =2

⇒ 2 2L
L

.
d

dt
L

dL

dt
=

But  since, L
L⊥ d

dt

∴ L
L

.
d

dt
= 0

Therefore, from Eq. (i)
dL

dt
= 0

or magnitude of L i.e. L does not change with time.

(b) So far we are confirm about two points

(i) τ or and
d

dt

L
L⊥

(ii) | L | = L is not changing with time, therefore, it is a

case when direction of Lis changing but its magnitude

is constant and τ is perpendicular to L at all points.

This can be written as

If L i= ( cos ) $a θ + ( sin ) $a θ j

Here, a = positive constant

Then τ = −( sin )$ ( cos )$a aθ θi j

So, that L⋅ τ = 0 and L ⊥ τ

Now, A is constant vector and it is always

perpendicular to τ. Thus, A can be written as A = A $k

we can see that L ⋅ A =0 i.e. L ⊥ A also.

y

m θ

θ

r h

x

v

O

O

v

m

h

v =cos 45° —
2

h

y

x

√
v

LL

L

L

τ

τ

ττ
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Thus, we can say that component of L along A is zero or

component of L along A is always constant.

Finally, we conclude that τ, A and L are always mutually

perpendicular.

16. Force on block along slot = = = 





m r ma m
vdv

dr
ω2

vdv rdr
v

R

r

0

2

2∫ ∫= ω
/

⇒ v
r

R2 2
2

2

2 2 4
= −











ω

⇒ v r
R dr

dt
= − =ω 2

2

4
⇒ dr

r
R

dt
R

r t

2
24 0

4
−

=∫ ∫/
ω

ln ln

r r
R

R

R
R R

R

+ −


















−
+ −

















2
2 2 2

4

2

2
4 4

4

/




= ωt

⇒ r r
R R

e t+ − =2
2

4 2

ω

⇒ r
R R

e r r
R

et t2
2 2

2 2

4 4
2

2
− = + −ω ω

⇒ r

R
e

R

Re

R
e e

t

t

t t=
+

= +

2
2

2

4 4

4

ω

ω
ω − ω( )

17.

F F i k k i krot in rot= + × + × ×2m v m r( $ ) $ ( $ $ ) $ω ω ω

mr mv m rω ω ω2 22$ ( $ ) $i F j i= + − +in rot

F jin = 2mvrω$

r
R

e et t= +
4

[ ]ω − ω

dr

dt
v

R
e er

t t= = −
4

[ ]ω ωω − ω

F jin = −2
4

m
R

e et tω ωω − ω[ ] $

F jin = −mR
e et tω ω − ω

2

2
[ ]$

Also, reaction is due to disc surface then

F j kreaction = − +mR
e e mgt tω ω − ω

2

2
[ ]$ $

18. Applying conservation of angular momentum

2
2

0
2

mvr
MR− =ω

ω = 4
2

mvr

MR

Substituting the values, we get

ω =
× 





× ×

−

−

( ) ( ) ( )4 5 10 9
1

4

45 10
1

4

2

2

⇒ω = 4 rad/s

19. I I1 1 2 2ω ω=

∴ ω ω2
1

2

1=








I

I
=

+

















1

2
1

2
2

2

2 2
1

MR

MR mr( )

ω

=
+ × ×











50

50 8
10

2

2 2

( )

( ) ( ) ( )
( )

0.4

0.4 6.25 0.2
= 8 rad/s

20.
L

L

I I

IB

A B

B

Total = +
⋅

( ) ω
ω

(as ω will be same in both cases)

= +I

I

A

B

1= +m r

m r

A A

B B

2

2
1= +r

r

A

B

1 (as m r m rA A B B= )

= +11
1

2.2
= 6 as r

m
∝





1

21. mvr k= (aconstant) ⇒ v
k

mr
=

T
mv

r

m

r

k

mr

k

m r
= = 











= ⋅
2 2 2

3

1

= −Ar 3 where, A
k

m
=











2

Hence, n = − 3

22. I I1 1 2 2ω ω=

∴ ω ω2
1

2

1= ⋅I

I
=

+
( / )

[( / ) ( / ) ]

ML

ML m L

2

2 2 0

12

12 2 2
ω

=
+











ML

ML mL

2

2 2 0
6

ω =
+







M

M m6
0ω

23. I I1 1 2 2ω ω=

∴ ω ω2
1

2

1= ⋅I

I
=

+ ⋅



















MR

MR M R

2

2 2
2

2 4 2

ω = 4

5
ω

v
m

r

ω

v
m

MR

r vr

Y ( )j

ω ( )k

w1 w2

⇒ Disc M, R→
Ring m, r→



24. In terms of $, $i j and $k

u i j= +v v0 0

2 2

$ $

⇒ a j= − g$

t
v

g
= 0

⇒ v u a i j= + = − −





t
v

v
v0

0
0

2 2

$ $

r s u a= = +t t
1

2

2

= + −v

g

v

g

v

g

0
2

0
2

0
2

2 2 2
$ $ $i j j

Now, angular momentum about point P at given time

L r v= ×m ( )

= − + − +








m

v

g

v

g

v

g

v

g

0
3

0
3

0
3

0
3

2 2 2 2 2

$k

= − mv

g

0
3

2 2

$k

Thus, magnitude of angular momentum is
mv

g

0
3

2 2
in − $k

direction i.e. in a direction perpendicular to paper inwards

Topic 3 Pure Rolling or Rolling without
Slipping

1. Moment of inertia (MI) of a disc about a tangential axis in the

plane of disc can be obtained as below.

Moment of inertia of disc about it’s axis,

I
MR

1

2

2
=

From perpendicular axes theorem, moment of inertia of disc

about an axis along it’s diameter is

I I Ix y z+ = ⇒ 2 2 1I I=

⇒ I
I

2
1

2
= = MR2

4

So, moment of inertia about a tangential axis from parallel

axes theorem is

I I MR= +2
2 = +MR

MR
2

2

4
= 5

4

2MR

Now, using torque, τ α= I , we have

τ α
ω ω

= =
−

∆






I MR

t

f i5

4

2

Here,

M = × −5 10 3 kg, R = × −1 10 2 m

ω f = 25 rps = ×25 2π rad

s
= 50πrad

s
,

ωi = 0, ∆ =t 5 s

So, τ
π

=
× × × ×− −5

4
5 10 10 50

5

3 2 2( )

≈ × −2 10 5 N-m

2. Rotation kinetic energy of a body is given by

KErotational = 1

2

2Iω

where, ω ω α= +0 t

So, KErotational = +1

2
0

2I t( )ω α … (i)

Here, I = 15 2. kgm ,

KE J= 1200 and

α = 20 rad / s2 and ω0 0=
Substituting these values in Eq. (i), we get

1200
1

2
15 20 2= ×( . ) ( )t

⇒ t 2 2 1200

15 400
4= ×

×
=

.

∴ t = 2 s

3. From question,

let height attained by ring = h1

Height attained by cylinder = h2

Height attained by sphere = h3
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R
R =1 cm

M=5 g = 5×10 kg–3

B

A

I
I2

R

I Iy= 2

I Ix= 2

I I1 z=

45°

v0

y

P
x



As we know that for a body which is rolling up an inclined

plane (without slipping), follows the law of conservation of

energy.

∴ For ring, using energy conservation law at its height h1.

( ) ( ) (KE KE PE)linear rotational+ =

⇒ 1

2

1

2
1 0

2
1

2
1 1m v I m gh+ =ω

⇒ 1

2

1

2
1 0

2
1

2 2
1 1m v m R m gh+ =ω

( )Q I mR= 2 for ring

⇒ gh
v v

1
0
2

0
2

2 2
= + ( )Q v R0 =ω

⇒ h v g1 0
2= / …(i)

Similarly, for solid cylinder, applying the law of

conservation of energy,

1

2

1

2
2 0

2
2

2
2 2m v I m gh+ =ω

⇒ 1

2

1

2

1

2 2
2 0

2
2

2
2

2 2m v m
R

m gh+ × × 













 =ω

Q I mR

R
R

=

=

















1

2

2

2 for cylinder

and

⇒ 1

2

1

2

1

8 2
2 0

2
2

2 0
2

2 2 2m v m R
v

R
m gh+ × × =

( / )

⇒ 1

2

1

4
0
2

0
2

2v v gh+ =

⇒ gh v2 0
23

4
=

⇒ h
v

g
2

0
23

4
=









 …(ii)

Similarly, for solid sphere,

1

2

1

2
3 0

2
3

2
3 3m v I m gh+ =ω

⇒ 1

2

1

2

2

5 4
3 0

2
3

2
2

3 3m v m
R

m gh+ 

















=ω

Q I mR

R
R

=

=

















2

5

4

2 for solid sphere

and

⇒ 1

2

1

2

2

5 16 4
3 0

2
3

2
0
2

2 3 3m v m
R v

R
m gh+ × × × =

( / )

⇒ 1

2

1

5
0
2

0
2

3v v gh+ =

⇒ gh v3 0
27

10
=

or h
v

g
3

0
27

10
=









 …(iii)

∴ Taking the ratio of h h1 2, and h3 by using

Eqs. (i), (ii) and (iii), we get

h h h
v

g

v

g

v

g
1 2 3

0
2

0
2

0
23

4

7

10
: : : :=

= 1
3

4

7

10
: :

⇒ h h h1 2 3 40 30 28: : : := = 20 15 14: :

∴ The most appropriate option is (c).

Although, it is still not in the correct sequence.

Alternate Solution

Total kinetic energy of a rolling body is also given as

E mv
K

R
total = +











1

2
12

2

2

where, K is the radius of gyration.

Using conservation law of energy,

1

2
12

2

2
mv

K

R
mgh+









 =

or h
v

g

K

R
= +











2 2

22
1

For ring,
K

R

2

2
1=

⇒ h
v

g
1

2

2
1 1= +[ ] = =2

2

2 2v

g

v

g

For solid cylinder,
K

R

R

R

2

2

2

2

2 2

2
= ( / )

( / )
= × =R

R

2

28

4 1

2

⇒ h
v

g

v

g
2

2 2

2
1

1

2

3

4
= +




=

For solid sphere,
K

R

2

2

2

5
=

⇒ h
v

g

v

g
3

2 2

2
1

2

5

7

10
= +





=

So,the ratio of h h1 2, and h3 is

h h h
v

g

v

g

v

g
1 2 3

2 2 23

4

7

10
: : : :=

= 1
3

4

7

10
: : = 20 15 14: :

4 When a spherical/circular body of radius r rolls without

slipping, its total kinetic energy is

K K Ktotal translation rotation= +

= +1

2

1

2

2 2mv Iω

= + ⋅1

2

1

2

2
2

2
mv I

v

r
Qω =





v

r

Let v be the linear velocity and R be the radius for both solid

sphere and solid cylinder.
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∴ Kinetic energy of the given solid sphere will be

K mv I
v

R
sph = +1

2

1

2

2
2

2sph

= + × ×1

2

1

2

2

5

2 2
2

2
mv mR

v

R
= 7

10

2mv …(i)

Similarly, kinetic energy of the given solid cylinder will be

K mv I
v

R
cyl cyl= +1

2

1

2

2
2

= + × ×1

2

1

2 2

2
2 2

2
mv

mR v

R
= 3

4

2mv …(ii)

Now, from the conservation of mechanical energy,

mgh K= total

∴ For solid sphere,

mgh mvsph = 7

10

2 …(iii) [using Eq. (i)]

Similarly, for solid cylinder,

mgh mvcyl = 3

4

2 …(iv) [using Eq. (ii)]

Taking the ratio of Eqs. (iii) and (iv), we get

mgh

mgh

mv

mv

sph

cyl

=

7

10
3

4

2

2

⇒
h

h

sph

cyl

= × =7

10

4

3

14

15

Alternate Solution

Total kinetic energy for a rolling body without slipping can

also be given as

K mv
K

R
total = +











1

2
12

2

2

where, K is the radius of gyration.

∴ From law of conservation,

mgh mv
K

R
= +











1

2
12

2

2

or h
K

R
∝ +









1

2

2

As we know that, for solid sphere,

K R= 2

5
⇒ K

R

2

2

2

5
=

Similarly, for solid cylinder,

K
R=
2

⇒ K

R

2

2

1

2
=

So,
h

h

sph

cyl

=
+

+

1
2

5

1
1

2

=

7

5
3

2

= × =7

5

2

3

14

15

5 Given, m = 5 kg, R =0 5. m.

Horizontal force, F = 40 N

As, Cylinder is rolling without slipping.

Hence, torque is producing rotation about centre O.

So, τ = ×r F (Here, r R= )

θ = °90

So, τ = × =r F RF

or τ = × =0 5 40 20. N-m …(i)

If α is acceleration of centre of mass ‘O’ then torque is,

τ α= I

where, I MR= 2

∴ τ = αMR2 …(ii)

Comparing Eq. (i) with Eq. (ii),

MR2 20α =

⇒ α =
×

20

5 0 5 2( . )

or α = 16 rad / s2

6 When force F is applied at the centre of roller of mass m as

shown in the figure below

Its acceleration is given by

( )F f

m
a

− = … (i)

where, f = force of friction and

m = mass of roller.

Torque on roller is provided by friction f and

it is

τ α= =fR I …(ii)

where, I = moment of inertia of solid cylindrical roller.

= mR2 2/

and α = angular acceleration of cylinder = a R/ .

Hence, τ = ⋅mR a

R

2

2
= maR

2

From Eq. (ii), ( )τ = fR

f
ma=
2

…(iii)

From Eqs. (i) and (iii), we get

F ma= 3

2
⇒ a

F

m
= 2

3

So, α = 2

3

F

mR
Qα =





a

R

O2R

F

α

F

f



7. For the mass m, mg T ma− =

As we know, a R= α
So, mg T mR− = α …(i)

Torque about centre of pully

T R mR× = 2α ...(ii)

From Eqs. (i) and (ii), we get, a g= / 2

Hence, the acceleration with the mass of a body fall is g / 2.

8. I IP Q>

In case of pure rolling, a
g

I mR
=

+
sin

/

θ
1 2

a aQ P> as its moment of inertia is less. Therefore, Q reaches

first with more linear speed and more translational kinetic

energy.

Further, ω = v

R
or ω ∝ v

∴ ω ωQ P> as v vP Q>

9.
1

2

1

2

3

4

2
2 2

mv I
v

R
mg

v

g
+ 





=










∴ I mR= 1

2

2

∴ Body is disc.

10. On smooth part BC, due to zero torque, angular velocity and

hence the rotational kinetic energy remains constant. While

moving from B to C translational kinetic energy converts into

gravitational potential energy. So, h hA c< and k kB C> .

11. In case of pure rolling bottom

most point is the instantaneous

centre of zero velocity.

Velocity of any point on the

disc, v r= ω, where r is the

distance of point from O.

r r rQ C P> >
∴ v v vQ C P> >

12. mg sin θ component is always down the plane whether it is

rolling up or rolling down.Therefore, for no slipping, sense

of angular acceleration should also be same in both the cases.

Therefore, force of friction f always act upwards.

13. In case of pure rolling on inclined plane,

a
g

I mR
=

+
sin

/

θ
1 2

I Isolid hollow<
∴ a asolid hollow>

∴ Solid cylinder will reach the bottom first. Further, in case

of pure rolling on stationary ground, work done by friction is

zero. Therefore, mechanical energy of both the cylinders will

remain constant.

∴ (KE) (KE)Hollow Solid= = decrease in PE = mgh

∴ Correct option is (d).

14. a R= α

∴ 2

1

2

2

kx f

M
R

fR

MR

− =

















Solving this equation, we get

f
kx= 2

3

∴ F kx fnet = −2 = −2
2

3
kx

kx = 4

3

kx

This is opposite to displacement.

∴ F
kx

net = − 4

3

15. F
kx

xnet = −





4

3

∴ a
F

M

k

M
x x= = −





= −net 4

3

2ω

∴ ω = 4
3

k

M

16. In case of pure rolling, mechanical energy will remain conserved.

∴ 1

2

1

2

1

2
2

1

2
0
2 2 0

2
2Mv MR

v

R
kx+ 











= 





max

∴ x
M

k
vmax = 3

4
0

As, f
kx= 2

3

∴ F Mg
kx

max = =µ 2 max

3
= 2

3

3

4
0

k M

k
v

∴ v g
M

k
0

3= µ

17.

(a) If force is applied normal to surface at P, then line of

action of force will pass from Q and thus, τ = 0.

(b) Wheel can climb.

(c) τ θ θ= −F R mgR( cos ) cos2 , τ θ∝ cos
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R

T

T

m

mg

am

P

C Q

O
ω

f

a

α

2kx

P
Q

F



Hence, as θ increases

τ decreases. So its correct.

(d)

τ θ τ= −⊥Fr mg cos ; increases with θ.

18.

(a) L L Lz O D= −− −CM CMcos sinθ θ

= × − ×81 24

5

24

5

17

2

1

24

2
2

a m
maω ω

= × −81 24

25

17

2 24

2 2ma maω ω

(b) L m
l l ml

OCM − = 





=( )5
9

5

9

5

81

5

2

ω ω

= ×81

5

2ml a

l

ω

L
mla a m

OCM − = =81

5

81 24

5

2ω ω

(c) Velocity of point P : aω ω= 1 then

ω ω= =a

1
Angular velocity of C.M. w.r.t.

point O.

Angular velocity of CM w.r.t. Z-axis = ω θ0 cos

ω ω ω
CM − = =z

a a

a1

24

5 24

24

5

ω ω
CM − =z

5

(d) L
ma m a ma

D − = + =CM

2 2 2

2

4 2

2

17ω ω ω
2

( )

19. Velocity of point O is

v RO = ( ) $3 ω i

vPO is
R ⋅ω

2
in the direction shown in figure.

In vector form

v i kPO

R R= − ° + °ω ω
2

30
2

30sin $ cos $

= − +R Rω ω
4

3

4
$ $i k

But v v vPO P O= −
∴ v v vP PO O= +

= − +








 +R R

R
ω ω ω
4

3

4
3$ $ $i k i

= +11

4

3

4
R Rω ω$ $i k

20. v v vA B= =0, and v vC = 2

21. In case of pure rolling,

f
mg

mR

I

=
+

sin θ

1
2

(upwards)

∴ f ∝ sin θ
Therefore, asθdecreases force of friction will also decrease.

22. a
g

I

MR

=
+

sinθ

1
2

a
g

ring = sinθ
2

(I MR= 2)

a
g

disc = 2

3

sinθ
I

MR=










2

2
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r⊥

θ
mg

x

F

θ

θ

l

θ
4l/5

P

4l/5

CM

4 m
Z

Ω

ω

O

ω

a cos =θ l

l + a√ 2 2
=

√24
5

30°

30°

30°

Rω/2

P

O

B v

A

C
2v

θ
mg

F



s
h

at= =
sinθ

1

2

2

= 





1

2 2
1
2g

t
sinθ

⇒ t
h

g

h

g
1 2

4 16

3
= =

sin θ

s
h

at= =
sinθ

1

2

2 = 





1

2

2

3
2
2g

t
sinθ

⇒ t
h

g
2 2

3=
sin θ

= 4h

g

t t
h

g

h

g
2 1

16

3

4− = − = −2 3

10

h
4

3
2 2 3−





= −

Soving this equation we get, h = 0 75. m.

23. The equations of motion are

a
mg f

m
= −sin θ

= ° − = −mg f

m

g f

m

sin 30

2
…(i)

α τ= = = =
I

f R

I

f R

mR

f

mR2 2

2

/
…(ii)

For rolling (no slipping)

a R= α
or g f m f m/ / /2 2− =

∴ 3
2

f

m
g= / or f mg= /6

24. Considering the motion of cylinder.

a
f

M
= ⇒ α = f R

MR2

2

= 2 f

MR

or R
f

M
α = 2

Now, a R a A+ = =α ωm xa
2

or
3 2f

m
A= ω

∴ f
M A= ω2

3

∴ τ ω
max = =f R

M AR2

3

25. In case of ring,
K

K

R

T

= 1 (pure rolling)

or K K
K

R T= =
2

∴ 1

2 2
1
2(0.3) v

K= (i)

In case of disc,
K

K

R

T

= 1

2
or K KT = 2

3

∴ 1

2

2

3
2
2( )0.4 v K= …(ii)

From Eqs. (i) and (ii),
v

v

1

2

1= i.e. v v1 2=

or both will reach simultaneously.

NOTE In the question,

K = kinetic energy given to ring and cylinder,

K R = rotational kinetic energy and

KT = translational kinetic energy.

26. In case of pure rolling, mechanical energy remains constant

(as work-done by friction is zero). Further in case of a disc,

translational kinetic energy

rotational kinetic energy
= K

K

T

R

=

1

2
1

2

2

2

mv

I ω

=











=mv

mR
v

R

2

2
2

1

2

2

1

or, K T = 2

3
(Total kinetic energy)

or, Total kinetic energy

K K mv mvT= = 





=3

2

3

2

1

2

3

4

2 2

Decrease in potential energy = increase in kinetic energy

or, mgh m v vf i= −3

4

2 2( ) or v gh vf i= +4

3

2

As final velocity in both cases is same.

So, value of
4

3

2gh vi+ should be same in both cases.
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f

f

a

α

a Amax
2=ω

Platform

hS

θ=60°



∴ 4

3
10 30 3

4

3
10 272

2
2× × + = × × +( ) ( )v

Solving this equation, we get

v2 7= m/s

27.

There is no slipping between ring and ground. Hence f2 is

not maximum. But there is slipping between ring and stick.

Therefore, f1 is maximum. Now let us write the equations.

I mR= =2 22( ) (0.5)

= 1

2

2kg -m

N f ma1 2− =
or N f1 2 2− = =( ) ( )0.3 0.6 N …(i)

a R
R

I
= =α τ = −R f f R

I

( )2 1 = −R f f

I

2
2 1( )

∴ 0.3
0.5= −( ) ( )

( / )

2
2 1

1 2

f f

or f f2 1− = 0.6 N …(ii)

N f1
2

1
2 22 4+ = =( ) …(iii)

Further f N1 1= µ = 





P
N

10
1 …(iv)

Solving above four equations we get, P ~− 3.6

28. For rolling without slipping, we have

a R= α

or
Mg f

M
R

fR

MR

sinθ − =















1

2

2

or
Mg f

M

f

M

sinθ − = 2

∴ f
Mg= sinθ

3

Therefore, linear acceleration of cylinder,

a
Mg f

M
= −sinθ = 2

3
g sinθ

29. We can choose any arbitrary directions of frictional forces at

different contacts.

In the final answer the negative values will show the opposite

directions.

Let f1 = friction between plank and cylinder

f2 = friction between cylinder and ground

a1 = acceleration of plank

a2 = acceleration of centre of mass of cylinder

and α = angular acceleration of cylinder about its CM.

Since, there is no slipping anywhere

∴ a a1 22= …(i)

a
F f

m
1

1

2

= −
…(ii)

a
f f

m
2

1 2

1

= +
…(iii)

α = −( )f f R

I

1 2 = −( )f f R

m R

1 2

1
21

2

α = −2 1 2

1

( )f f

m R
…(iv)

a R
f f

m
2

1 2

1

2= = −α ( )
…(v)

(a) Solving Eqs. (i) to (v), we get

a
F

m m
1

1 2

8

3 8
=

+
and a

F

m m
2

1 2

4

3 8
=

+

(b) f
m F

m m
1

1

1 2

3

3 8
=

+
;

f
m F

m m
2

1

1 23 8
=

+

Since, all quantities are positive, they are correctly shown in

figures.

30. Given, mass of disc m = 2kg and radius R = 01. m

(a) FBD of any one disc is
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f2

N1

mg

N2 f1

a

q

M a

Mg sin θ
a

f

m2
F

a1

f1

m1

a

f1

a2

f2

a = 9 m/s2

Truck

x

z

y
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Frictional force on the disc should be in forward

direction.

Let a0 be the linear acceleration of CM of disc andα the

angular acceleration about its CM. Then,

a
f

m

f
0

2
= = …(i)

α τ= = = =
×

=
I

f R

m R

f

mR

f
f

1

2

2 2

2 01
10

2 .
…(ii)

Since, there is no slipping between disc and truck.

Therefore,

∴α + =0 R aα or
f

f a
2

01 10






+ =( . ) ( )

or
3

2

2

3

2 9 0

3
f a f

a= ⇒ = = × .
N

∴ f = 6N

Since, this force is acting in positive x-direction.

Therefore, in vector form f i= ( $ )6 N

(b) τ = ×r f

Here, f = (6$i) N ( for both the discs)

r r j kP = = − −1 01 01. $ . $

and r r j kQ = = −2 01 01. $ . $

Therefore, frictional torque on disk 1 about point O

(centre of mass).

τ1 1 01 01 6= × = − − ×r f j k i( . $ . $ ) ( $ ) N-m

= −( . $ . $ )0 6 0 6k j

or τ1 0 6= −. ( $ $ )k j N-m

and | | ( . ) ( . )τ1
2 20 6 0 6= +

= 0 85. N-m

Similarly, τ2 2= ×r f = − −0 6. ( $ $ )j k

and | | | |τ τ1 2= = 0 85. N- m

31. h = − =2.6 1.0 1.6 m

During pure rolling mechanical energy remains conserved

So, at bottom of track total kinetic energy of sphere will be

mgh.

The ratio of
K

K

R

T

= 2

5

or K mgh mvT = =5

7

1

2

2

∴ v gh= = × ×10

7

10

7
9.8 1.6

= 4.73 m/s

In projectile motion

Time to fall to ground = × =2 1

9.8
0.45 s

∴ The desired distance BC vt= = 2.13 m

In air, during its flight as a projectile only mg is acting on the

sphere which passes through its centre of mass. Therefore,

net torque about centre of mass is zero or angular velocity

will remain constant.

Topic 4 Collision in Rotational Motion
1 Initial kinetic energy of the given system,

KE i I
I= + 











1

2

1

2 2 2
1 1

2 1 1

2

ω ω

= +





=1

2

1

16

9

16
1 1

2
1 1

2I Iω ω …(i)

Now, using angular momentum conservation law

(assuming angular velocity after contact is ω)

Initial angular momentum = Final angular momentum

I
I

I
I

1
1 1

1
1

2 2 2
ω ω ω ω1 +

















= ′ + ′

⇒ 5

4

3

2
1ω ω= ′ or ω ω′ = 5

6 1
… (ii)

Now, final kinetic energy (after contact) is

KE f I
I= ′ + 





′1

2

1

2 2
1

2 2ω ω1

= 





+ 





1

2

5

6

1

4

5

6
1 1

2

1 1

2

I Iω ω [using Eq. (ii)]

= +





25

72

25

144
1 1

2I ω

= 25

48
1 1

2I ω …(iii)

Hence, change in KE,

∆KE KE KE= −f i

= −25

48

9

16
1 1

2
1 1

2I Iω ω [using Eqs. (i)]

∆KE = − 1

24
1 1

2I ω

1 2

QP

z

y
x

f
→

f
→

0.2 m

v

CB

h
ω
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2. Let ω be the angular velocity of the rod. Applying,

angular impulse = change in angular momentum about centre

of mass of the system

J
L

Ic.
2

= ω

∴ ( ) ( )Mv
L ML

2
2

4

2





=








 ω

∴ ω = v

L

3. Since, it is head on elastic collision between two identical

spheres, they will exchange their linear velocities, i.e., A

comes to rest and B starts moving with linear velocity v. As

there is no friction anywhere, torque on both the spheres

about their centre of mass is zero and their angular velocities

remain unchanged. Therefore,

ω ω ωA B= =and 0.

4. r
a

r
a= =2

2 2

2
2

or

Net torque about O is zero.

Therefore, angular momentum ( )L about O will be
conserved, or L Li f=

Mv
a

Io
2







= ω = ( )I MrCM + 2 ω

=








 +



















Ma
M

a2 2

6 2
ω

= 2

3

2Ma ω

ω = 3

4

v

a

5. The data is incomplete. Let us assume that friction from

ground on ring is not impulsive during impact.

From linear momentum conservation in horizontal direction,

we have

( ) ( )− × + ×2 1 200.1

= × + ×( ) ( )0.1 0 2 v ←→
− +ve ve

Here, v is the velocity of CM of ring after impact.

Solving the above equation, we have v = 0

Thus, CM becomes stationary.

∴ Correct option is (a).

Linear impulse during impact

(i) In horizontal direction

J p1 20 2= ∆ = × =0.1 N -s

(ii) In vertical direction J p2 10 1= ∆ = × =0.1 N -s

Writing the equation (about CM)

Angular impulse = Change in angular momentum

We have,

1
3

2

1

2
2

1

2
× ×









 − × ×0.5 = × −





2
12( )0.5

0.5
ω

Solving this equation ω comes out to be positive or ω
anti-clockwise. So just after collision rightwards slipping is

taking place.

Hence, friction is leftwards.

Therefore, option (c) is also correct.

6. Pi = 0

∴ Pf = 0 or vc = 0

L Li f= or ( ) ( ) ( )2 2 2mv a mv a I+ = ω …(i)

Here, I
m a

m a m a ma= + + =( ) ( )
( ) ( ) ( )

8 6

12
2 2 30

2
2 2 2

Substituting in Eq. (i), we get

ω = v

a5

Further, E I= 1

2

2ω = × 





=1

2
30

5

3

5

2
2 2

( )ma
v

a

mv

7. (a) Let just after collision, velocity of CM of rod is v and

angular velocity about CM is ω . Applying following

three laws.

(1) External force on the system (rod + mass) in horizontal

plane along x-axis is zero.

M

ω

M

J = Mv

vω

A B
Before collision

ω ωA=

A B
After collision

v

a

V

a

ω
rCa

vM M

O O

ω

2 N-s

1 N-s

+ve –ve

CM

L
2

L
2

Before collision

m
v0

CM

After collision

m

v x
ω



∴ Applying conservation of linear momentum in

x-direction.

mv mv0 = …(i)

(2) Net torque on the system about CM of rod is zero.

∴ Applying conservation of angular momentum about

CM  of rod, we get mv
L

I0
2







= ω

or mv
L ML

0

2

2 12
= ω

or mv
ML

0
6

= ω
...(ii)

(3) Since, the collision is elastic, kinetic energy is also

conserved.

∴ 1 = +
2

1

2

1

2
0
2 2 2mv Mv Iω

or mv Mv
ML

0
2 2

2
2

12
= + ω …(iii)

From Eqs. (i), (ii) and (iii), we get the following results

m

M
= 1

4

v
mv

M
= 0 and ω = 6 0mv

ML

(b) Point P will be at rest if x vω =

or x
v mv M

mv ML
= =

ω
0

06

/

/

or x L= /6

∴ AP
L L= +
2 6

or AP L= 2

3

(c) After time t
L

v
= π

3 0

angle rotated by rod, θ ω π= =t
mv

ML

L

v

6

3

0

0

.

= 





2π m

M

= 





2
1

4
π ∴ θ π=

2

Therefore, situation will be as shown below

∴ Resultant velocity of point P will be

| |vP v= 2 = 





2 0

m

M
v

= 2

4
0v = v0

2 2
or | |vP

v= 0

2 2

8. System is free to rotate but not free to

translate. During collision, net torque on the

system (rod A B+ +rod mass m) about

point P is zero.

Therefore, angular momentum of system
before collision
= angular momentum of system just after

collision (about P).

Let ω be the angular velocity of system just

after collision, then

L Li f=
⇒ mv l I( )2 = ω …(i)

Here, I = moment of inertia of system about P

= + + + +

















m l m l m
l l

lA B( ) ( / )2 3
12 2

2 2
2 2

Given, l = 0.6 m, m = 0.05 kg, mA

= 0.01 kg and mB = 0.02  kg.

Substituting the values, we get

I = 0.09 kg-m2

Therefore, from Eq. (i)

ω = =2 2 0 05 0 6

0 09

mvl

I

v( ) ( . ) ( )( . )

.

ω = 0 67. v …(ii)

Now, after collision, mechanical energy will be conserved.

Therefore, decrease in rotational KE

= increase in gravitational PE
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CM v
ω

L
2

P

x

A

v
ω

P

A

⇒
P

A

B

vm

l

A

P

l

ω

ω

ω = 0
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or
1

2
2

2 2

2I mg l m g
l

m g l
l

A Bω = + 





+ +( ) ( )

or ω2 4 3= + +gl m m m

I

A B( )

= × + + ×( . ) ( . ) ( . . . )

.

9 8 0 6 4 0 05 0 01 3 0 02

0 09

= 17.64 (rad/s)2

∴ ω = 4.2 rad/s …(iii)

Equating Eqs. (ii)  and (iii), we get

v = 4.2

0.67
m/s or v = 6.3 m/s

9. In this problem we will write K for the angular momentum

because L has been used for length of the rod.

(a) Angular momentum of the system (rod + insect) about

the centre of the rod O will remain conserved just before

collision and after collision, i.e. K Ki f= .

or Mv
L

I
ML

M
L

4 12 4

2 2

= = + 













ω ω

or Mv
L

ML
4

7

48

2= ω

i.e. ω = 12

7

v

L
…(i)

(b) Due to the torque of weight of insect about O, angular

momentum of the system will not remain conserved

(although angular velocity ω is constant). As the insect

moves towards B, moment of inertia of the system

increases, hence, the angular momentum of the system

will increase.

Let at time t1 the insect be at a distance x from O and by

then the rod has rotated through an angleθ. Then, angular

momentum at that moment,

K
ML

Mx= +










2
2

12
ω

Hence,
dK

dt
M x

dx

dt
= 2 ω ( )ω =constant

⇒ τ ω= 2M x
dx

dt
⇒ Mgx M x

dx

dt
cos θ ω= 2

⇒ dx
g

t dt= 



2ω

ωcos ( )Qθ ω= t

At time t = 0, x L= / 4 and at time t T= / 4 or π ω/ ,2

x L= / .2

Substituting these limits, we get

L

L
dx

g
t dt

/

/ /
(cos )

4

2

0

2

2∫ ∫=
ω

ω
π ω

[ ] [sin ]/
/x

g
tL

L
4
2

2 0

2

2
=

ω
ω π / ω

⇒ L L g

2 4 2 2
0

2
−





= −



ω

π
sin sin

L g

4 2 2
=

ω
or ω = 2g

L

Substituting in Eq. (i), we get

2 12

7

g

L

v

L
= .

or v gL= 7

12
2

= × ×7

12
2 10 1.8

∴ v = 3.5m/s

10. Let v be the velocity of centre of mass (also at C) of rod and

two particles and ω the angular velocity of the system.

From conservation of linear momentum

(0.08) (10 + 6) 0.08 + 0.08 + 0.16= [ ] v

∴ v = 4 m/s

AC CB= = 0.5m

Similarly, conservation of angular momentum about point C.

(0.08) (10) (0.5) – (0.08) (6) (0.5) = Iω …(i)

Here, I I I= +rod two particles

= +( ) ( )
( ) ( )

1.6
0.08 0.5

3

12
2

2
2

= 0 08. kg-m2

Substituting in Eq. (i), we get

ω = 2 rad/s

Loss of kinetic energy

= +1

2
10

1

2
62 2(0.08) (0.08)( ) ( )

− 1

2
( ) ( ) ( )0.08 0.08 0.16 (0.08)+ + −4

1

2
22 2

= + − −4 1.44 2.56 0.16 = 2.72 J

L/4 L/4L/2

V

M

A BCO

Just before collision

A BCO

Just after collision

ω

A

C

B

C v
ω

A

B

10 m/s

6 m/s
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Topic 5 Miscellaneous Problems

1. Key Idea In a uniform rod, mass per unit length remains
constant. If it is denoted by λ , then

λ = =m

l
constant for all segments of rod.

To find tension at x distance from fixed end, let us assume an

element of dx length and dmmass. Tension on this part due to

rotation is

dT Kx= …(i)

As, K m= ω2

For this element, K dm= ( )ω2 …(ii)

∴ dT dm x= ( )ω2 …(iii)

To find complete tension in the rod, we need to integrate Eq.

(iii),

dT dm x

T m

0

2

0

∫ ∫= ( ) ω …(iv)

Using linear mass density,

λ = =m

l

dm

dx

⇒ dm
m

l
dx= ⋅ …(v)

Putting the value of Eq. (v) in Eq. (iv), we get

T
m

l
x dx

x

l

= ⋅ ⋅∫ ω2 = ⋅










m

l

x

x

l

ω2
2

2

⇒ T
m

l
l x= −ω2
2 2

2
[ ] or T x∝ − 2

2. Key Idea The rectangular box rotates due to torque of weight

about its centre of mass.

Now, angular impulse of weight = Change in angular

momentum.

∴ mg
l ml

2 3

2

× =τ ω

⇒ ω τ= ×
×

3

2

g

l

Substituting the given values, we get

= × ×
×

3 10 0 01

2 0 3

.

.
= 0 5. rad s−1

Time of fall of box,

t
h

g
= = ×2 2 5

10
≈ 1s

So, angle turned by box in reaching ground is

θ ω= = × =t 0 5 1 0 5. . rad

3. Given, situation is,

Force of attraction between mass ‘m’ and an elemental mass

‘dm’ of rod is

dF
Gmdm

x

Gm A Bx dx

x
= = +

2

2

2

( )

Total attraction force is sum of all such differential forces

produced by elemental parts of rod from x a= to x a L= + .

∴ F dF
Gm A Bx

x
dx

x a

x a L
= = +

=

= +
∫∫

( )2

2

= +



=

= +
∫Gm

A

x
B dx

x a

x a L

2

= +



 =

= +

Gm
A

x
Bx

x a

x a L

–

=
+

+ + +





Gm
A

a L
B a L

A

a
Ba

–
( ) –

= −
+

+





Gm
A

a

A

a L
BL = −

+






+








Gm A
a a L

BL
1 1

4. Given, m = 1kg

| |τ = 2.5 N-m, F = 1N and r = 5 m

We know that, torque | | sinτ = rF θ
⇒ 2 5 5 1. sin= × × θ

⇒ sinθ = 1

2

or θ = π
6

rad

5. According to the question as shown in the figure below,

r i j1 2 3= +$ $ and r j2 6= $

F k1 = F $

and F i j2 30 30= − −( sin º $ cos º $ ) F

Moment of force is given as, τ = ×r F

where, r is the perpendicular distance and F is the force.

∴ Moment due to F1

τ1 2 3= + ×( $ $ ) ( $ )i j kF

= − +2 3F F$ $j i …(i)

l

x
dm (mass)

dx

x

a

dx

dm

m

a + L

30°
y

4 m

x1

6 m

F1

z

r1

F2r2

O
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Moment due to F2

τ2 6 30 30= × − −( $ ) ( sin º $ cos $ )j i j F

= =6 30 3sin º $ $F Fk k …(ii)

∴ Resultant torque,

τ τ τ= + = − +1 2 3 2 3F F F$ $ $i j k

= − +( $ $ $ )3 2 3i j k F .

6. Key Idea When a rod is pivoted at any point, its angular
acceleration is given by τ αnet = I .

The given condition can be drawn in the figure below

Torque ( )τ about P = × + ×r F r F1 1 2 2 … (i)

⇒ τ = ×l M g5 0 (outwards) − ×2 2 0l M g inwards)

⇒ τ = −5 40 0M gl M gl (outwards)

⇒ τ = M gl0 (outwards)

or τ = M gl0 …(ii)

Now we know that, torque is also given by

τ α= I …(iii)

Here, I = moment of inertia (w.r.t. point P) of rod and α =
angular acceleration.

For point P, I M l M l= × +( ) ( ) ( )5 2 20
2

0
2 [Q I MR= 2]

⇒ I M l= 13 0
2 …(iv)

Putting value of I from Eq. (iv) in Eq. (iii), we get

τ α= ( )13 0
2M l …(v)

From Eqs. (ii) and (v), we get

M gl M l0 0
213= α ⇒ α = g

l13

7 Let a small strip of mop has width dx and radius x, as shown

below,

Torque applied to move this strip is

dτ = Force on strip

× Perpendicular distance from the axis

⇒ dτ = Force per unit area × Area of strip

× Perpendicular distance from the axis.

= ⋅ ⋅µ
π

πF

R
xdx x

2
2 ⇒ d

Fx

R
dxτ µ= ⋅2 2

2

So, total torque to be applied on the mop is

τ τ µ= = ⋅
=

=
∫ ∫d

Fx

R
dx

x

x R R

0

2

20

2

= ×2

32

3µF

R

R = 2

3
µFR -(N m)

8 Lose of potential energy of rod = Gain of kinetic energy

∴ ∆ PE I= 1

2

2ω

(where, I = MOI of rod and ω =angular frequency of rod)

⇒ Mg
L

I× ° = × ×
2

30
1

2

2sin ω

⇒ Mg
L

I
2

1

2

1

2

2× = × × ω ⇒ Mg L

I

×
×

=2

4

2ω

⇒ MgL

ML
4

3

2

12

×
× = ω Q I

ML=










2

3
for rod

ω = 30 rad/s

9 Since in the given question, rotational torque, τ ∝ angular

displacement.

Thus, when it will be released, the system will execute SHM

with a time period, T
I

k
= 2π

(Where I is moment of inertia and k is torsional constant)

and the angular frequency is given as, ω = k

I
.

If we know look at the top view of the above figure, we have

2 M0

5 M0 P

| |r1 l | | 2r2 l

F M g2 0=2F M g1 0=5

= =

dx

R

x
Mop

F

30°
L/2 sin 30°

L=
50 cm

ω

m/2 m

2l/3 l/3

τ = θ = θk I

θ
′ ′

m/2

(m)

2 /3l

l/3

θ0 T
A

θ0
O l

3



At some angular displacement ‘θ0’, at point ‘A ’ the

maximum velocity will be

v
l

max =
3

0θ ω = l k

I3
0θ ...(i)

Then, tension in the rod when it passes through mean

position will be

T
m v

l
= × max

2

3

= ×
× ×

ml k

l I

2
0
2 3

9

θ
[using Eq. (i)]

= ml k

I

θ0
2

3
The moment of inertia I at point O,

= 





+ 





m l
m

l

2

2

3 3

2 2

= +2

9 9

2 2l m ml = =3

9 3

2 2ml ml

⇒ T
ml k

ml
= ×

×
θ0

2 3

3 2
= =θ θ0

2
0
2k

l

k

l

10.

At distance x0 from O, v R= ω
Distance less than x0, v R> ω
Initially, there is pure rolling at both the contacts. As the cone

moves forward, slipping at AB will start in forward direction,

as radius at left contact decreases.

Thus, the cone will start turning towards left. As it moves,

further slipping at CD will start in backward direction which

will also turn the cone towards left.

11.

ω = v r/

From conservation of angular momentum about bottom most
point

mr mvr mr v r2
0

2ω = + × /

⇒ v
r= ω0

2

12. Language of question is not very clear. For example, disc is

rotating. Its different points have different velocities.

Relative velocity of pebble with respect to which point, it is

not clear. Further, actual initial positions of P and Q are also

not given.

13. Language of question is wrong because relative speed is not

the correct word. Relative speed between two is always zero.

The correct word is magnitude of relative velocity.

Corresponding to above values, the correct graph is (a).

14. | |L or L I= ω (about axis of rod)

I I mx I mv t= + = +rod rod
2 2 2

Here, m = mass of insect

∴ L I mv t= +( )rod
2 2 ω

Now | | ( )τ ω= =dL

dt
mv t2 2 or | |τ ∝ t

i.e. the graph is straight line passing through origin.

After time T , L = constant

∴ | |τ or
dL

dt
= 0

15. Condition of sliding is

mg mgsin cosθ µ θ>
or tanθ µ> or tanθ > 3 …(i)

Condition of toppling is

Torque of mg sinθ about 0> torque of mg cosθ about

∴ ( sin )mg mgθ θ15

2

10

2







> 





( cos )

or tan θ > 2

3
...(ii)

With increase in value of θ, condition of sliding is satisfied

first.

16. L r v= ×m( )

Direction of ( ),r v× hence the direction of angular

momentum remains the same.
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v
v v

f
ωR

ω ′R

ω

x0 x0

v
ωω0

vv

|vr| =
t =

0
0

v v

|vr| = v = R2 2 ω
t = T/4

|vr| = 0
t = T/2

ω

x = v t

mg cos θ
mg sin θ

N

O

f

θ



17. At the critical condition, normal reaction N will pass through

point P. In this condition, τ τN fr= =0 ( about P )

the block will topple when

τ τF mg> or FL mg
L> ( )
2

∴ F
mg>
2

Therefore, the minimum force required to topple the block is

F
mg=
2

18. Work done, W I= 1

2

2ω

If x is the distance of mass 0.3 kg from the centre of mass, we

will have,

I x x= + −( ) ( . ) ( )0.3 1.42 20 7

For work to be minimum, the moment of inertia (I ) should be

minimum, or
dI

dx
= 0

or 2 2 0( ) ( ) ( )0.3 0.7 1.4x x− − =
or ( . ) ( . )( )0 3 0 7x x= −1.4

⇒ x =
+

( . ) ( )

.

0 7

0 7

1.4

0.3
= 0.98m

19. Mass of the element dx is m
M

L
dx= .

This element needs centripetal force for rotation.

∴ dF mx
M

L
x dx= = 





ω ω2 2

∴ F dF
M

L
xdx

L L
= =∫ ∫0

2

0
. ω = M Lω2

2

This is the force exerted by the liquid at the other end.

20. V
Kr=

2

2

F
dV

dr
Kr= − = − (towards centre) F

dV

dr
= −





kR
mv

R
=

2

(Centripetal force)

v
kR

m

k

m
R= =

2

L mvR mkR= = 2

21. F i j= +( )$ $α βt [at t =0,v=0, r=0]

α = 1, β = 1 ⇒ F i j= +t$ $

m
d

dt
t

v
i j= +$ $

On integrating,

m
t

tv i j= +
2

2
$ $ [m = 1kg]

d

dt

t
t

r
i j= v= +

2

2
$ $ ⇒ v += 1

2
2($ $i j) at t = 1 s

Again, on integrating,

r i j= +t t3 2

6 2
$ $ [r=0 at t =0]

At t =1s, τ = × = +





× +( ) $ $ ($ $ )r F i j i j
1

6

1

2
= − 1

3
$k

22. When the bar makes an angle θ, the height of its COM

(mid-point) is
L

2
cosθ.

∴ Displacement = −L
L

2
cosθ = −L

2
1( cos )θ

Since, force on COM is only along the vertical direction,

hence COM is falling vertically downward. Instantaneous

torque about point of contact is

τ θ= ×mg
L

2
sin

or τ θ∝ sin
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f1

F

G

N

mg

L

L
–
2

F F+dF

dx

x = L

x = 0

ω

x

r

v

O

A

C
y

x
O

mg

y

x
θ

θ



Now, x
L=
2

sin θ

y L= cosθ
x

L

y

L

2

2

2

22
1

( / )
+ =

Path of A is an ellipse.

23. When force F = 0 ⇒ potential energyU = constant

F ≠ ⇒0 force is conservative ⇒ Total energy E = constant

List-I

(P) r i j( ) $ $t t t= +α β
d

dt

r
v i j= = +α β$ $ = constant ⇒ p= constant

| |v = + =α β2 2 constant ⇒ K = constant

d

dt
F U

v
a= = ⇒ = ⇒ =0 0 constant

E U K= + = constant

L r v= × =m( ) 0

L = constant

P → 1 2 3 4 5, , , ,

(Q) r i j( ) cos $ sin $t t t= +α ω β ω
d

dt
t t

r
v i j= = − +αω ω βω ωsin ( $ ) cos $ ≠ constant

⇒ p ≠ constant

| | ( sin ) ( cos )v = + ≠ω α ω β ωt t2 2 constant

⇒ K ≠ constant

a
v

r= = − ≠d

dt
ω2 0

⇒ E = constant = +K U

But K ≠ constant ⇒ U ≠ constant

L r v k= × = =m m( ) ( $ )ωαβ constant

Q → 2 5,

(R) r i j( ) (cos $ sin $ )t t t= +α ω ω
d

dt
t t

r
v i j= = − + ≠αω ω ω[sin ( $ ) cos $ ] constant

⇒ p ≠ constant

| |v = αω = constant ⇒ K = constant

a
v

r=
d

dt
E= − ≠ ⇒ =ω2 0 constant,U = constant

L r v k= × = =m m( ) $ωα2 constant

R → 2 3 4 5, , ,

(S) r i j( ) $ $t t t= +α β
2

2

d

dt
t

r
v i j= = + ≠α β$ $ constant ⇒ p ≠ constant

| | ( )v = + ≠α β2 2t constant ⇒ K ≠constant

a
v

j= = ≠ ⇒ =d

dt
Eβ$ 0 constant = +K U

But K ≠ constant

∴ U ≠ constant

L r v k= × = ≠m t( ) $
1

2

2αβ constant

S → 5

24. Question is not very clear.

25. If height of the cone h r>>
Then, µN mg=
µ ωm R r mg( )− =0

2

ω
µ0 =

−
g

R r( )

26-27. (i) Every particle of the disc is rotating in a horizontal circle.

(ii) Actual velocity of any particle is horizontal.

(iii) Magnitude of velocity of any particle is

v r= ω
where, r is the perpendicular distance of that particle from

actual axis of rotation (Z-axis).

(iv) When it is broken into two parts then actual velocity of
any particle is resultant of two velocities

v r1 1 1= ω and v r2 2 2= ω
Here,

r1 = perpendicular distance of centre of mass from

Z-axis.

ω1 = angular speed of rotation of centre of mass

from Z-axis.

r2 = distance of particle from centre of mass and

ω2 = angular speed of rotation of the disc about the

axis passing through centre of mass.

(v) Net v will be horizontal, if v1 and v2 both are horizontal.
Further, v1 is already horizontal, because centre of mass
is rotating about a vertical Z-axis. To make v2 also
horizontal, second axis should also be vertical.

28.
1

2
2

1

2

2
1
2I kx( )ω = …(i)

1

2
2

1

2

2
2
2( ) ( )I kxω = …(ii)

From Eqs. (i) and (ii), we have

x

x

1

2

2=

29. Let ω′ be the common velocity. Then from conservation of

angular momentum, we have

( ) ( ) ( )I I I I+ ′ = +2 2 2ω ω ω

ω ω′ = 4

3

From the equation,

angular impulse = change in angular momentum, for any of

the disc, we have

τ ω ω⋅ = − 





t I I( )2
4

3
= 2

3

Iω

∴ τ ω= 2

3

I

t
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30. Loss of kinetic energy = −K Ki f

= +







1

2
2

1

2
22 2I I( ) ( ) ( )ω ω − 





=1

2
3

4

3

1

3

2
2( )I Iω ω

31. Angular impulse = change in angular

momentum

∴ ∫ =τ ωdt I

⇒ ω
τ

= ∫ dt

I
=

°∫0
3 30

t
F R dt

I

sin

Substituting the values, we have

ω = 3 (0.5) (0.5) (0.5) (1)

1.5 (0.5)

2

2
= 2 rad/s

32. Net torque of all the forces about B should be zero.

∴ W d x N dA( )− = ⋅

or N
d x

d
WA = −





For vertical equilibrium of rod

N N WA B+ =

∴ N B = x

d
W = −W N A

= − −





W
d x

d
W = x

d
W

33. Taking moments about point O

Moments of N (normal

reaction) and f (force of

friction) are zero. In critical

case normal reaction will pass

through O. To tip about the

edge, moment of F should be

greater than moment of mg. Or,

F
a

mg
a3

4 2







> ( )

or F mg> 2

3

34. α τ=
I

τ = × ⊥F r : Torque is same in both the cases but moment of

inertia depends on distribution of mass from the axis.

Distribution of mass in both the cases is different. Therefore,

moment of inertia will be different or the angular

acceleration α will be different.

35. Angular momentum of the system about an axis

perpendicular to plane of paper and passing through O will

remain conserved.

L Li f=

∴ mvL I mL
ML= = +









ω ω2

2

3

∴ ω =
+

3

3

mv

L m M( )

36. (a) The distance of centre of mass (CM) of the system about

point A will be r
l=
3

Therefore, the magnitude of horizontal force exerted by

the hinge on the body is

F = centripetal force or F m r= ( )3 2ω

or F m
l= 





( )3
3

2ω

or F ml= 3 2ω

(b) Angular acceleration of system about point A is

α τ= A

AI
=









( )F l

ml

3

2

2 2
= 3

4

F

ml

Now, acceleration of CM along x-axis is

a r
l F

ml
x = = 













α

3

3

4
or a

F

m
x =

4

Let Fx be the force applied by the hinge along X-axis.

Then, F F m ax x+ = ( )3

or F F m
F

m
x + = 





( )3
4

or F F Fx + = 3

4

or F
F

x = −
4

Further if Fy be the force applied by the hinge along

Y-axis. Then,

Fy = centripetal force

or F mly = 3 2ω
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37. Let r be the perpendicular distance of CM from the line AB

and ω the angular velocity of the sheet just after colliding

with rubber obstacle for the first time.

Obviously the linear velocity of CM before and after

collision will be v ri = ( ) ( 1 rad/s) = r and v rf = ω.

v vi fand will be in opposite directions.

Now, linear impulse on CM

= change in linear momentum of CM

or 6 30= + = +m v v r rf i( ) ( )ω

or r ( )1
1

5
+ =ω …(i)

Similarly, angular impulse about AB = change in angular

momentum about AB

Angular impulse = Linear impulse

× perpendicular distance of impulse fromAB

Hence, 6 1( ) ( )0.5 m = +I AB ω
(Initial angular velocity = 1 rad s/ )

or 3 12= + +[ ] ( )I MrCM ω

or 3 30 12= + +[ ] ( )1.2 r ω …(ii)

Solving Eqs. (i) and (ii) for r, we get

r = 0 4. m and r = 0.1 m

But at r = 0 4. ,m ω comes out to be negative ( / )−0.5 rad s

which is not acceptable. Therefore,

(a) r=distance of CM from AB = 01. m

(b) Substituting r = 01. m in Eq. (i), we get ω =1 rad s/ ie, the

angular velocity with which sheet comes back after the

first impact is 1 rad/s.

(c) Since, the sheet returns with same angular velocity of

1 rad/s, the sheet will never come to rest.

38. Initial and final positions are shown below.

Decrease in potential energy of mass

= ×







=mg
R mgR

2
5

4

5

2

Decrease in potential energy of disc = mg
R

2
4

×







= mgR

2

Therefore, total decrease in potential energy of system

= + =5

2 2
3

mgR mgR
mgR

Gain in kinetic energy of system =
1

2

2I ω

where, I = moment of inertia of system (disc + mass) about

axis PQ

= moment of inertia of disc

+ moment of inertia of mass

= + 
















+ 





mR
m

R
m

R2 2 2

4 4

5

4

I
mR= 15

8

2

From conservation of mechanical energy,

Decrease in potential energy = Gain in kinetic energy

∴ 3
1

2

15

8

2
2mgR

mR=








 ω

⇒ ω = 16

5

g

R

Therefore, linear speed  of particle at its lowest point

v
R R g

R
= 





=5

4

5

4

16

5
ω

v gR= 5

39. (a) Between the time t = 0to t t= 0. There is forward sliding,

so friction f is leftwards and maximum i.e. µmg. For time

t t> 0, friction f will become zero, because now pure rolling

has started i.e. there is no sliding (no relative motion)

between the points of contact.

So, for time t t< 0

Linear retardation, a
f

m
g= = µ

and angular acceleration, α µ= τ = =
I

f R

mR

g

R1

2

2

2

Now, let v be the linear velocity and ω, the angular velocity

of the disc at time t t= 0, then

v v at v gt= − = −0 0 0 0µ …(i)

and ω α µ= =t
gt

R
0

02
…(ii)

For pure rolling to take place

v R= ω

C

P Q

C R/4

3R
4

m

P Q

3R
4

ω R/4

5R
4

R/4

m

R 5R
4

R

v0

ω
v

f = f = mgmax µ fmax f = 0

t = t0
t = 0

a

f = mgµ

a
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i.e. v gt gt0 0 02− =µ µ ⇒ t
v

g
0

0

3
=

µ

Substituting in Eq. (i), we have

v v g
v

g
= − 



0

0

3
µ

µ
⇒ v v= 2

3
0

(b) Work done by friction

For t t≤ 0 , linear velocity of disc at any time t is v v gt= −0 µ

and angular velocity is ω α µ= =t
gt

R

2
. From Work-energy

theorem, work done by friction upto time t = Kinetic energy

of the disc at time t – Kinetic energy of the disc at time t = 0

∴ W mv I mv= + −1

2

1

2

1

2

2 2
0
2ω

= − + 











−1

2

1

2

1

2

2 1

2
0

2 2
2

0
2m v gt mR

gt

R
mv[ ]µ µ

= + − + −1

2
2 20

2 2 2 2
0

2 2 2
0
2[ ]mv m g t mv gt m g t mvµ µ µ

or W
m gt

gt v= −µ µ
2

3 2 0[ ]

For t t> 0, friction force is zero i.e. work done in friction is

zero. Hence, the energy will be conserved.

Therefore, total work done by friction over a time t much

longer then t0 is total work done upto time t0 (because

beyond this work done by friction is zero) which is equal to

W
m gt

gt v= −µ µ0
0 0

2
3 2[ ]

Substituting t0 = v g0 3/ ,µ we get

W
mv

v v= −0
0 0

6
2[ ] ⇒ W

mv= − 0
2

6

40. (a) The cylinder rotates about the point of contact. Hence, the

mechanical energy of the cylinder will be conserved i.e.

∴ (PE KE) (PE KE)1 2+ = +

∴ mgR mgR I mv+ = + +0
1

2

1

2

2 2cos θ ω

but ω = v R/ (no slipping at point of contact)

and I mR= 1

2

2

Therefore,

mgR mgR mR
v

R
mv= + 













 +cos θ 1

2

1

2

1

2

2
2

2

2

or
3

4
12v gR= −( cos )θ

or v gR2 4

3
1= −( cos )θ

or
v

R
g

2 4

3
1= −( cos )θ …(i)

At the time of leaving contact, normal reaction

N c= =0 and θ θ . hence,

mg
mv

R
cosθ =

2

or
v

R
g

2

= cos θ …(ii)

From Eqs. (i) and (ii),

4

3
1g gc c( cos ) cos− =θ θ

or
7

4
1cos θc = or cos /θc = 4 7 or θc = −cos ( / )1 4 7

(b) v gR= −4

3
1( cos )θ

At the time of losing contact

cos cos /θ θ= =c 4 7

∴ v gR= −





4

3
1

4

7
or v g R= 4

7

Therefore, speed of CM of cylinder just before losing

contact is
4

7
gR

(c) At the moment, when cylinder loses contact

v gR= 4

7

Therefore, rotational kinetic energy, K IR = 1

2

2ω

or K mR
v

R
R = 





1

2

1

2

2
2

2
=

1

4

2mv = 





1

4

4

7
m gR

or K
mgR

R =
7

Now, once the cylinder loses its contact, N = 0, i.e the

frictional force, which is responsible for its rotation, also

vanishes. Hence, its rotational kinetic energy now

becomes constant, while its translational kinetic energy

increases. Applying conservation of energy at (a) and (c).

v

ω

ω

θ R
cos θR

v

(b)(a)

(c)

R

m
g

cosq

θ

m
g

sin
q

mg

v

N = 0



Decrease in gravitational PE

= Gain in rotational KE + translational KE

∴ Translational KE ( )K T

= Decrease in gravitational PE − K R

or K mgR
mgR

mgRT = − =( )
7

6

7

∴ K

K

mgR

mgR
T

R

=

6

7

7

or
K

K

T

R

= 6

41. Given, mass of block X , m = 0.5kg

Mass of drum Y , M = 2kg

Radius of drum, R = 0.2 m

Angle of inclined plane, θ = °30

(a) Let a be the linear retardation of block X and α be the

angular retardation of drum Y . Then, a R= α
mg sin 30° – T ma= …(i)

or
mg

T ma
2

− = …(ii)

α τ= =
I

TR

MR
1

2

2

or α = 2T

MR
…(iii)

Solving Eqs. (i), (ii) and (iii) for T , we get,

T
M mg

M m
=

+
1

2 2

Substituting the value, we get

T = 



 +








1

2

2

2 2

( ) ( ) ( )

( ) ( )

0.5 9.8

0.5
= 1.6 N3

(b) From Eq. (iii), angular retardation of drum

α = =2 2 1 63

2

T

MR

( ) ( . )

( ) ( )0.2
= 8 15. /rad s2

or linear retardation of block

a R= = =α ( ) ( ) /0.2 8.1 1.6 m s25 3

At the moment when angular velocity of drum is

ω0 10= rad s/

The linear velocity of block will be

v R0 0 10 2= = =ω ( ) ( )0.2 m/s

Now, the distance ( )s travelled by the block until it

comes to rest will be given by

s
v

a
= 0

2

2
( )Using withv v as v2

0
2 2 0= − =

= ( )

( )

2

2 3

2

1.6
or s = 1.2 m2

42. Let M ′ be the mass of unwound carpet. Then,

M
M

R

R M′ = 











=
π

π
2

2

2 4

From conservation of mechanical energy :

MgR M g
R M

v I− ′ = 





+
2

1

2 4

1

2

2 2ω

or MgR
M

g
R− 









4 2

= + × ×






 





Mv M R v

R

2 2 2

8

1

2

1

2 4 4 2/

or
7

8

3

16

2

MgR
Mv=

∴ v
Rg= 14

3
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