Topic 1 Preliminary Concepts of Electrovalent and Covalent Bonding

(2019 Main, 10 April I)

Objective Questions I (Only one correct option)

The isoelectronic set of ions is

 (a) F , Li⁺, Na⁺ and Mg²⁺

(b) N^3 , Li^+ , Mg^{2+} and O^2

- (c) Li , Na⁺, O² and F
- (d) N^3 , O^2 , F and Na^+
- **2.** Which of the following compounds contain(s) no covalent bond(s)?

 $\begin{array}{ccc} & & & KCl, PH_3, O_2, B_2H_6, H_2SO_4 \\ (a) \ KCl, B_2H_6, PH_3 & (b) \ KCl, H_2SO_4 \\ (c) \ KCl & (d) \ KCl, B_2H_6 \end{array} \tag{2018 Main}$

- 3. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is (2015 Main) (a) ion-ion interaction (b) ion-dipole interaction (c) London force (d) hydrogen bond
- **4.** The nodal plane in the -bond of ethene is located in
 - (a) the molecular plane (2002, 3M)
 - (b) a plane parallel to the molecular plane
 - (c) a plane perpendicular to the molecular plane which bisects the carbon-carbon -bond at right angle
 - (d) a plane perpendicular to the molecular plane which contains the carbon-carbon -bond
- **5.** Amongst H_2O , H_2S , H_2Se and H_2Te , the one with the highest boiling point is (2000, 1M)
 - (a) H_2O because of hydrogen bonding
 - (b) H_2 Te because of higher molecular weight
 - (c) H_2S because of hydrogen bonding
 - (d) H_2 Se because of lower molecular weight
- **6.** Arrange the following compounds in order of increasing dipole moment, toluene (I), *m*-dichlorobenzene (II), *o*-dichlorobenzene (III), *p*-dichlorobenzene (IV) (1996, 1M)

(a)
$$I < IV < II < III$$
 (b) $IV < I < II < III$

 (c) $IV < I < III < III$
 (d) $IV < II < II < III$

- The number and type of bonds between two carbon atoms in CaC₂ are (1996, 1M)
 - (a) one sigma () and one pi () bonds
 - (b) one sigma () and two pi () bonds
 - (c) one sigma () and one half pi () bonds
 - (d) one sigma () bond
- **8.** The molecule which has zero dipole moment is (1989, 1M) (a) CH_2Cl_2 (b) BF_3 (c) NF_3 (d) ClO_2
- 9. Element X is strongly electropositive and element Y is strongly electronegative. Both are univalent. The compound formed would be (1980, 1M)
 (a) X Y
 (b) X Y
 (c) X Y
 (d) X Y
- 10. Which of the following compound is covalent? (1980, 1M)
 (a) H₂
 (b) CaO
 (c) KCl
 (d) Na₂S
- **11.** The total number of electrons that take part in forming the bonds in N₂ is (1980, 1M) (a) 2 (b) 4 (c) 6 (d) 10
- 12. The compound which contains both ionic and covalent bonds is (1979, 1M)
 (a) CH₄
 (b) H₂
 (c) KCN
 (d) KCl

Objective Questions II

(One or more than one correct option)

13. Dipole moment is shown by(1986, 1M)(a) 1, 4-dichlorobenzene(b) cis-1, 2-dichloroethene(c) trans-1, 2-dichloroethene(d) trans-1, 2-dichloro-2- pentene

Numerical Value

14. Among the species given below, the total number of diamagnetic species is _____

 $\label{eq:hardward} \begin{array}{ll} H \mbox{ atom, } NO_2 \mbox{ monomer, } O_2 \mbox{ (superoxide), dimeric sulphur in vapour phase, } Mn_3O_4, (NH_4)_2 [FeCl_4], (NH_4)_2 [NiCl_4], \\ K_2MnO_4, K_2CrO_4 \mbox{ (2018 Adv.)} \end{array}$

Assertion and Reason

Read the following questions and answer as per the direction given below:

- (a) Statement I is true; Statement II is true; Statement II is the correct explanation of Statement I
- (b) Statement I is true; Statement II is true; Statement II is not the correct explanation of Statement I
- (c) Statement I is correct; Statement II is incorrect
- (d) Statement I is incorrect; Statement II is correct
- Statement I LiCl is predominantly a covalent compound.
 Statement II Electronegativity difference between Li and Cl is too small. (1998, 2M)

Fill in the Blank

16. There are bonds in a nitrogen molecule. (1982, 1M)

True/False

- **17.** All molecules with polar bonds have dipole moment.
 - (1985, <mark>1</mark> M)
- Linear overlapping of two atomic *p*-orbitals leads to a sigma bond. (1983, 1M)

Subjective Questions

- **19.** Arrange the following ions in order of their increasing radii: Li , Mg^2 , K , Al³ . (1997, 1M)
- 20. Between Na and Ag , which is stronger Lewis acid and why? (1997, 3M)
- **21.** In the reaction, I + I₂ I₃, which is the Lewis acid? (1997, 1M)
- Explain the difference in the nature of bonding in LiF and LiI. (1996, 2M)
- **23.** The dipole moment of KCl is $3.336 \ 10^{29}$ C-m which indicates that it is a highly polar molecule. The interatomic distance between K⁺ and Cl in this molecule is 2.6 $\ 10^{10}$ m. Calculate the dipole moment of KCl molecule if there were opposite charges of one fundamental unit located at each nucleus. Calculate the percentage ionic character of KCl. (1993, 2M)
- 24. Give reasons in two or three sentences only for the following : "Hydrogen peroxide acts as an oxidising as well as a reducing agent." (1992, 1M)
- State four major physical properties that can be used to distinguish between covalent and ionic compounds. Mention the distinguishing features in each case. (1978, 2M)

Topic 2 VBT, Hybridisation and VSEPR Theory

Objective Questions I (Only one correct option)

- **1.** The correct statements among I to III are :
 - I. Valence bond theory cannot explain the color exhibited by transition metal complexes.
 - II. Valence bond theory can predict quantitatively the magnetic properties of transition metal complexes.
 - III. Valence bond theory cannot distinguish ligands as weak and strong field ones. (2019 Main, 9 April II)
 - (a) II and III only
 - (b) I, II and III
 - (c) I and II only
 - (d) I and III only
- **2.** The correct statement about ICl_5 and ICl_4 is

(2019 Main, 8 April II)

- (a) ICl_5 is square pyramidal and ICl_4 is tetrahedral
- (b) ICl₅ is square pyramidal and ICl₄ is square planar
- (c) Both are isostructural
- (d) ICl₅ is trigonal bipyramidal and ICl₄ is tetrahedral
- **3.** The ion that has sp^3d^2 hybridisation for the central atom, is (2019 Main, 8 April II)

(a) [ICl ₂]	(b) [BrF ₂]
(c) [ICl ₄]	(d) [IF ₆]

- 4. The size of the iso-electronic species Cl , Ar and Ca² is affected by (2019 Main, 8 April I) (a) azimuthal quantum number of valence shell (b) electron-electron interaction in the outer orbitals
 - (c) principal quantum number of valence shell
 - (d) nuclear charge
- In which of the following processes, the bond order has increased and paramagnetic character has changed to diamagnetic? (2019 Main, 9 Jan II)
 - (a) $O_2 O_2^+$ (b) $N_2 N_2^+$ (c) $O_2 O_2^2$ (d) NO NO⁺
- 6. Total number of lone pair of electron in I₃ ion is (2018 Main)
 (a) 3
 (b) 6
 - (c) 9 (d) 12
- 7. The group having isoelectronic species is (2017 Main) (a) O^2 , F, Na^+ , Mg^{2+} (b) O, F, Na, Mg^+ (c) O^2 , F, Na, Mg^{2+} (d) O, F, Na^+ , Mg^{2+}
- **8.** The correct statement for the molecule, CsI_3 is (2014 Main)
 - (a) it is a covalent molecule
 - (b) it contains Cs and I_3 ions
 - (c) it contains Cs^{3+} and I ions
 - (d) it contains Cs $% I_{2}$, I_{2} and lattice I_{2} molecule

9.	The species having pyramic (a) SO ₃ (b) BrF ₃	dal shape is (c) SiO_3^2	(2010) (d) OSF ₂
10.	Assuming that Hund's rule magnetic nature of the diate (a) 1 and diamagnetic (c) 1 and paramagnetic	omic molecule B (b) 0 and dian	$_2$ is (2010) nagnetic
11.	The species having bond or (a) NO (c) CN	rder different fro (b) NO (d) N ₂	m that in CO is (2007, 3M)
12.	Among the following, the p	paramagnetic coi	mpound is (2007, 3M)
13.	(a) Na_2O_2 (b) O_3 Which of the following compairs on the central atom? (a) ClO_3 (b) XeF_4	(c) N ₂ O ntains maximum (c) SF ₄	(d) KO ₂ n number of lone (2005, 1M) (d) I ₃
14.	Number of lone pair(s) in λ (a) 0 (b) 1		(d) 13 (2004, 1M) (d) 3
15.	Which of the following are NO_3^-, CO_3^{2-}, ClO (a) NO_3^-, CO_3^2 (c) ClO_3^-, CO_3^{2-}	isoelectronic an	d isostructural ? (2003, 1M)
16.	Among the following, the moment is (a) CH ₃ Cl (c) CHCl ₃	molecule with th (b) CH_2Cl_2 (d) CCl_4	ne highest dipole (2003, 1M)
17.	Which of the following relectron (s)? (a) N_2 (b) F_2	molecular speci (c) O_2^-	es has unpaired (2002, 3M) (d) O ₂ ²⁻
18.	(a) N_2 (b) I_2 Specify the coordination ge of N and B atoms in a 1 : 1 (a) N : tetrahedral, sp^3 ; B: (b) N : pyramidal, sp^3 ; B: 1 (c) N: pyramidal, sp^3 ; B: 1 (d) N: pyramidal, sp^3 ; B: te	complex of BF ₃ tetrahedral, sp^3 pyramidal, sp^2	and hybridisation
19.	The correct order of hybrid following species NH_3 , [Pt (a) dsp^2 , dsp^3 , sp^2 and sp^3	isation of the ce	BCl ₃ is
	(a) asp^2 , asp^2 , sp^2 and sp^2 (b) sp^3 , dsp^2 , sp^3d and sp^2 (c) dsp^2 , sp^2 , sp^3 and dsp^3 (d) dsp^2 , sp^3 , sp^2 and dsp^3		(2001, 1M)
20.	The common features amor and NO^+ are	ng the species Cl	
	 and NO⁺ are (a) bond order three and isc (b) bond order three and we (c) bond order two and according (d) isoelectronic and weak 	eak field ligands	(2001, 1M)
21.	The hybridisation of at NO_2^+ , NO_3 and NH_4^+ are	omic orbitals	of nitrogen in
	100_2 , 100_3 and $10\pi_4$ are		(2000, 1M)

	(a) sp , sp^3 and sp^2 respectively	
	(b) sp , sp^2 and sp^3 respective	
	(c) sp^2 , sp and sp^3 respective (d) sp^2 , sp^3 and sp respective	•
22.		H CH_2 CH_2 C CH , the (1999, 2M)
	(a) $sp - sp^2$	(b) $sp^3 - sp^3$
	(c) $sp - sp^3$	(d) $sp^2 - sp^3$
23.		s dipole moment are (1999, 2M)
	() U	(b) angular and zero(d) linear and zero
24.	The geometry and the type c central atom in BF_3 is	of hybrid orbital present about the (1998, 2M)
	(a) linear, <i>sp</i>	(b) trigonal planar, sp^2
		(d) pyramidal, sp^3
25.	Which one of the following sp^2 - hybridisation?	^
	(a) CO_2	(1997, 1M) (b) SO ₂
	(c) N_2O	(d) CO
26.		and NO_2^+ , unpaired electron is (1997 C, 1M)
	*	(b) KO ₂ and AlO ₂
		(d) Only BaO_2
27.		are isoelectronic, but in contrast
	to CN , N_2 is chemically in	
	(a) low bond energy	
	(b) absence of bond polarity(c) unsymmetrical electron	
	· · ·	er of electron in bonding orbitals
28.	Among the following specie	es, identify the isostructural pairs.
		BF_3, H_3O^+, N_3H (1996, 1M)
	(a) [NF ₃ ,NO ₃] and [BF ₃ ,H ₃	O ⁺]
	(b) [NF ₃ , N ₃ H] and [NO ₃ , B	F ₃]
	(c) $[NF_3, H_3O^+]$ and $[NO_3^-,$	BF ₃]
	(d) $[NF_3, H_3O^+]$ and $[N_3H, H_3O^+]$	BF ₃]
29.	Which one of the following	molecules is planar? (1996, 1M)
	(a) NF_3 (b) NCl_3	(c) PH_3 (d) BF_3
30.	The maximum possible nur molecule can form is	nber of hydrogen bonds a water (1992, 1M)
	(a) 2 (b) 4	(c) 3 (d) 1
31.	The type of hybrid orbitals ClO_2 is	used by the chlorine atom in (1992, 1M)
	(a) sp^3	(b) sp^2
	(c) <i>sp</i>	(d) None of these
32.	The molecule which has py	ramidal shape is (1989, 1M)
	(a) PCl ₃	(b) SO ₃
	(c) CO_3^{2-}	(d) NO_3^-

(a) O_2^- (b) CN^- (c) CO(d) NO^+ 34. The Cl—C—Cl angle in 1, 1, 2, 2-tetrachloroethene and tetrachloromethane respectively will be about(1988, 1M)(a) 120 and 109.5(b) 90 and 109.5(c) 109° and 90(d) 109.5 and 12035. The molecule that has linear structure is(1988, 1M)(a) CO2(b) NO2(c) SO2(d) SiO236. The species in which the central atom uses sp^2 -hybrid orbitals in its bonding is(1988, 1M)(a) PH3(b) NH3(c) CH3 ⁺ (d) SbH337. Of the following compounds, which will have a zero dipole moment ?(1987, 1M)(a) 1, 1-dichloroethylene(b) $cis-1$, 2-dichloroethylene(b) $cis-1$, 2-dichloroethylene(d) None of the above38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M)(a) sp (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons(1986, 1M)(a) unequally shared between the two(b) transferred fully from one atom to another	33.	Which of the following is p	aramagnetic?	(1989, 1M)
 34. The Cl—C—Cl angle in 1, 1, 2, 2-tetrachloroethene and tetrachloromethane respectively will be about (1988, 1M) (a) 120 and 109.5 (b) 90 and 109.5 (c) 109° and 90 (d) 109.5 and 120 35. The molecule that has linear structure is (1988, 1M) (a) CO₂ (b) NO₂ (c) SO₂ (d) SiO₂ 36. The species in which the central atom uses sp²-hybrid orbitals in its bonding is (1988, 1M) (a) PH₃ (b) NH₃ (c) CH₃⁺ (d) SbH₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp³ (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 			-	, , ,
tetrachloromethane respectively will be about (1988, 1M) (a) 120 and 109.5 (b) 90 and 109.5 (c) 109° and 90 (d) 109.5 and 120 35. The molecule that has linear structure is (1988, 1M) (a) CO ₂ (b) NO ₂ (c) SO ₂ (d) SiO ₂ 36. The species in which the central atom uses sp^2 -hybrid orbitals in its bonding is (1988, 1M) (a) PH ₃ (b) NH ₃ (c) CH ₃ ⁺ (d) SbH ₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) cis-1, 2-dichloroethylene (c) trans-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another		(c) CO	(d) NO^+	
tetrachloromethane respectively will be about (1988, 1M) (a) 120 and 109.5 (b) 90 and 109.5 (c) 109° and 90 (d) 109.5 and 120 35. The molecule that has linear structure is (1988, 1M) (a) CO ₂ (b) NO ₂ (c) SO ₂ (d) SiO ₂ 36. The species in which the central atom uses sp^2 -hybrid orbitals in its bonding is (1988, 1M) (a) PH ₃ (b) NH ₃ (c) CH ₃ ⁺ (d) SbH ₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) cis-1, 2-dichloroethylene (c) trans-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another	34.	The Cl—C—Cl angle in 1	, 1, 2, 2-tetrachlor	bethene and
(c) 109° and 90 (d) 109.5 and 120 35. The molecule that has linear structure is (a) CO_2 (b) NO_2 (c) SO_2 (d) SiO_2 36. The species in which the central atom uses sp^2 -hybrid orbitals in its bonding is (a) PH ₃ (b) NH ₃ (c) CH_3^+ (d) SbH_3 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) cis -1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons (a) unequally shared between the two (b) transferred fully from one atom to another		-		
35. The molecule that has linear structure is(1988, 1M)(a) CO_2 (b) NO_2 (c) SO_2 (d) SiO_2 36. The species in which the central atom uses sp^2 -hybrid orbitals in its bonding is(1988, 1M)(a) PH_3 (b) NH_3 (c) CH_3^+ (d) SbH_3 37. Of the following compounds, which will have a zero dipole moment ?(1987, 1M)(a) 1, 1-dichloroethylene (b) <i>cis</i> -1, 2-dichloroethylene (d) None of the above(1987, 1M) 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (c) sp^2 (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons (a) unequally shared between the two (b) transferred fully from one atom to another(1986, 1M)		(a) 120 and 109.5	(b) 90 and 109.5	·
 (a) CO₂ (b) NO₂ (c) SO₂ (d) SiO₂ 36. The species in which the central atom uses sp²-hybrid orbitals in its bonding is (1988, 1M) (a) PH₃ (b) NH₃ (c) CH₃⁺ (d) SbH₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp³ (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 		(c) 109° and 90	(d) 109.5 and 120	
 36. The species in which the central atom uses sp²-hybrid orbitals in its bonding is (1988, 1M) (a) PH₃ (b) NH₃ (c) CH₃⁺ (d) SbH₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp³ (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 	35.	The molecule that has linear	r structure is	(1988, 1M)
orbitals in its bonding is (1988, 1M) (a) PH ₃ (b) NH ₃ (c) CH ₃ ⁺ (d) SbH ₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i> -1, 2-dichloroethylene (c) <i>trans</i> -1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) <i>sp</i> (b) <i>sp</i> ³ (c) <i>sp</i> ² (d) <i>dsp</i> ² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another		(a) CO_2 (b) NO_2	(c) SO_2 (d)	SiO ₂
 (a) PH₃ (b) NH₃ (c) CH₃⁺ (d) SbH₃ 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) <i>sp</i> (b) <i>sp</i>³ (c) <i>sp</i>² (d) <i>dsp</i>² 39. The bond between two identical non-metal atoms has a pair of electrons (a) unequally shared between the two (b) <i>transferred</i> fully from one atom to another 	36.		central atom uses	
 37. Of the following compounds, which will have a zero dipole moment ? (1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) <i>sp</i> (b) <i>sp</i>³ (c) <i>sp</i>² (d) <i>dsp</i>² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 		e	$() CII^+$	
moment ?(1987, 1M)(a) 1, 1-dichloroethylene(b) cis -1, 2-dichloroethylene(c) $trans$ -1, 2-dichloroethylene(d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M)(a) sp (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons(1986, 1M)(a) unequally shared between the two(b) transferred fully from one atom to another	~-			5
(1987, 1M) (a) 1, 1-dichloroethylene (b) <i>cis</i> -1, 2-dichloroethylene (c) <i>trans</i> -1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) <i>sp</i> (b) <i>sp</i> ³ (c) <i>sp</i> ² (d) <i>dsp</i> ² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another	37.	- · ·	ls, which will have a	•
 (b) <i>cis</i>-1, 2-dichloroethylene (c) <i>trans</i>-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) <i>sp</i> (b) <i>sp</i>³ (c) <i>sp</i>² (d) <i>dsp</i>² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 				(1987, IM)
 (c) trans-1, 2-dichloroethylene (d) None of the above 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp³ (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 		•	e	
 38. The hybridisation of sulphur in sulphur dioxide is (1986, 1M) (a) sp (b) sp³ (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 		•		
(a) sp (b) sp^3 (c) sp^2 (d) dsp^2 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another		(d) None of the above		
 (c) sp² (d) dsp² 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 	38.		-	s (1986, 1M)
 39. The bond between two identical non-metal atoms has a pair of electrons (1986, 1M) (a) unequally shared between the two (b) transferred fully from one atom to another 				
of electrons(1986, 1M)(a) unequally shared between the two(b) transferred fully from one atom to another		(c) sp^2	(d) dsp^2	
(a) unequally shared between the two(b) transferred fully from one atom to another	39.		tical non-metal aton	ns has a pair
(b) transferred fully from one atom to another			an the true	(1986, 1M)
•				
(c) with identical spins		(c) with identical spins	te atom to another	
(d) equally shared between them		(d) equally shared between	them	
40. On hybridisation of one <i>s</i> and one <i>p</i> -orbital we get	40.	•		get
(a) two mutually perpendicular orbitals (1984, 1M)		•••	ular orbitals	(1984, 1M)
(b) two orbitals at 180(c) four orbitals directed tetrahedrally			rahedrallv	
(d) three orbitals in a plane			· · · ·)	

- 41. Carbon tetrachloride has no net dipole moment because of(a) its planar structure(1983, 1M)
 - (b) its regular tetrahedral structure
 - (c) similar sizes of carbon and chlorine atoms(d) similar electron affinities of carbon and chlorine

42.	The ion that is isoelectroni	c with CO is	(1982, 1M)
	(a) CN	(b) O ₂	
	(c) O ₂	(d) N ₂	
43.	Among the following, the	linear molecule is	(1982, 1M)

- (a) CO_2 (b) NO_2 (c) SO_2 (d) CIO_2
- **44.** If a molecule MX_3 has zero dipole moment, the sigma bonding orbitals used by M (atomic number 21) are (a) pure p (b) sp-hybridised (1981, 1M) (c) sp^2 -hybridised (d) sp^3 -hybridised

Objective Questions II

(One or more than one correct option)

45.	The molecul	ve dipole mom	ent are (1992, 1M)	
	(a) 2, 2-dime	ethyl propane	(b) trans-2-p	entene
	(c) cis-3-hex	ene	(d) 2,2,3,3-te	etramethyl butane
46.	Which of the	e following hav	ve identical bo	nd order?
	(a) CN ⁻		(b) O_2^-	(1992, 1M)
	(c) NO^+		(d) CN^+	
47.	The linear st	ructure assume	ed by	(1991, 1M)
	(a) SnCl ₂	(b) CS ₂	(c) NO_2^+	(d) NCO^{-}
48.	CO ₂ is isostr	ructural with		(1986, 1M)
	(a) HgCl ₂	(b) C_2H_2	(c) $SnCl_2$	(d) NO_2

Match the Columns

49. Match the orbital overlap figures shown in Column I with the description given in Column II and select the correct answer using the codes given below the Columns. (2014 Adv.)

	C	olumn							
		Julli	1		Column II				
A.	Ś		þ	1.	p-d	antib	onding		
В.	X	X		2.	d-d	bondi	ng		
C.	X	X)	3.	p-d	bondin	ıg		
D.		00	þ	4.	d-d	antibo	nding		
Codes									
А	В	С	D		А	В	С	D	
(a) 4	3	2	1	(b)	1	2	3	4	
(c) 2	3	1	4	(d)	4	1	2	3	

50. Match each of the diatomic molecules in Column I with its property/properties in Column II. (2009)

	Colum	n I	ColumnI	I
А.	B_2	p.	Paramag	gnetic
В.	N ₂	q.	Undergo	bes oxidation
C.	O ₂	r.	Undergo	bes reduction
D.	O ₂	s.	Bond or	der 2
		t.	Mixing o	of 's' and 'p' orbitals
Cod	les			
	А	В	С	D
(a)	q, r, s	p, r, t, s	q, r, t	p, q, t
(b)	p, q, r, t	q, r, s, t	p, q, r, t	p, r, s, t
(c)	q, r, s, t	p, q, r	r, s, t	p, q, r, t
(d)	p, q, s, t	p, q, s	p, t	q, r, t

Fill in the Blanks

- **51.** Among N_2O , SO_2 , I_3^+ and I_3^- , the linear species are and (1997 C, 1M)
- **52.** When N_2 goes to N_2 , the N N bond distance ..., and when O_2 goes to O_2 the O O bond distance (1996. 1M)
- **53.** The two types of bonds present in B_2H_6 are covalent and (1994, 1M)
- **54.** The kind of delocalisation involving sigma bond orbitals is called......(1994, 1M)
- 55. The valence atomic orbitals on C in silver acetylide ishybridised. (1990, 1M)
- **56.** The shape of CH_3 is (1990, 1M)
- **57.** hybrid orbitals of nitrogen atom are involved in the formation of ammonium ion. (1982, 1M)
- **59.** The angle between two covalent bonds is maximum in (CH_4, H_2O, CO_2) (1981, 1M)

True/False

- **60.** The dipole moment of CH_3F is greater than that of CH_3Cl . (1993, 1M)
- **61.** H_2O molecule is linear. (1993, 1M)
- **62.** The presence of polar bonds in a polyatomic molecule suggests that the molecule has non-zero dipole moment.

(1990, 1M)

63. sp^3 hybrid orbitals have equal s and p character.

(1987, 1M)

64. In benzene, carbon uses all the three *p*-orbitals for hybridisation. (1987, 1M)

65. SnCl₂ is a non-linear molecule. (1985, $\frac{1}{2}$ M)

Integer Type Questions

66. The sum of the number of lone pairs of electrons on each central atom in the following species is [TeBr₆]², [BrF₂], SNF₃ and [XeF₃]

(Atomic numbers : N 7, F 9, S 16, Br 35, Te 52, Xe 54) (2017 Adv.)

67. Among the triatomic molecules/ions BeCl₂, N₃, N₂O, NO₂, O₃, SCl₂, ICl₂, I₃ and XeF₂, the total number of linear molecules(s)/ion(s) where the hybridisation of the central

atom does not have contribution from the *d*-orbital(s) is [atomic number of S = 16, Cl = 17, I = 53 and Xe 54] (2015 adv.)

68. A list of species having the formula XZ_4 is given below (2014 Adv.)

 XeF_4 , SF_4 , SiF_4 , BF_4 , BrF_4 , $[Cu(NH_3)_4]^2$, $[FeCl_4]^2$, $[CoCl_4]^2$ and $[PtCl_4]^2$

Defining shape on the basis of the location of X and Z atoms, the total number of species having a square planar shape is

- **69.** The total number of lone-pair of electrons in melamine is (2013 Adv.)
- **70.** Based on VSEPR theory, the number of 90° F—Br—F angles in BrF_5 is (2010)

Subjective Questions

- **71.** Predict whether the following molecules are isostructural or not. Justify your answer.
 - (i) NMe_3 (ii) $N(SiMe_3)_3$ (2005, 2M)
- 72. On the basis of ground state electronic configuration, arrange the following molecules in increasing O—O bond length order. KO₂, O₂, O₂[AsF₆]
 (2004, 2M)
- **73.** Draw the shape of XeF₄ and OSF₄ according to VSEPR theory. Show the lone pair of electrons on the central atom. (2004, Main, 2M)
- **74.** Using VSEPR theory, draw the shape of PCl_5 and BrF_5 .

(2003, 2M)

- **75.** Draw the molecular structures of XeF_2 , XeF_4 and XeO_2F_2 , indicating the location of lone pair(s) of electrons. (2000, 3M)
- **76.** Interpret the non-linear shape of H_2S molecule and non-planar shape of PCl₃ using valence shell electron pair repulsion (VSEPR) theory. (Atomic number : H = 1, P = 15, S = 16, Cl = 17) (1998, 4M)
- 77. Using the VSEPR theory, identify the type of hybridisation and draw the structure of OF₂. What are the oxidation states of O and F ? (1997, 3M)
- **78.** Write the Lewis dot structural formula for each of the following. Give also, the formula of a neutral molecule, which has the same geometry and the same arrangement of the bonding electrons as in each of the following. An example is given below in the case of H_3O^+ and NH_3 .

	H	Н	
Н	ОН	H N H	
		N 1. 1 1	
Lewis d	ot structure	Neutral molecule	(1983, 4M)
(i) O_2^2	(ii) CO_3^2	(iii) CN	(iv) NCS

Topic 3 Resonance, LCAO, MOT, Other Bonding Types

Objective Questions I (Only one correct option)

- 1. During the change of O_2 to O_2 , the incoming electron goes to the orbital. (2019 Main, 10 April I) (a) $2p_x$ (b) *2p_x (c) $2p_y$ (d) *2p_z
- HF has highest boiling point among hydrogen halides, because it has (2019 Main, 9 April II)
 - (a) lowest ionic character
 - (b) strongest van der Waals' interactions
 - (c) strongest hydrogen bonding
 - (d) lowest dissociation enthalpy
- **3.** Among the following species, the diamagnetic molecule is (2019 Main, 9 April II)

(a) CO (b)
$$B_2$$
 (c) NO (d) O_2

- 4. Among the following, the molecule expected to be stabilised by anion formation is C₂, O₂, NO, F₂. (2019 Main, 9 April I)
 (a) C₂
 (b) F₂
 - (c) NO (d) O_2
- **5.** Among the following molecules/ions, C_2^2 , N_2^2 , O_2^2 , O_2

Which one is diamagnetic and has the shortest bond length? (2019 Main, 8 April II) (a) C_2^2 (b) O_2 (c) O_2^2 (d) N_2^2

6. Two pi and half sigma bonds are present in

(2019 Main, 10 Jan I) (a) O_2 (b) N_2 (c) N_2 (d) O_2

- 7. According to molecular orbital theory, which of the following is true with respect to Li₂ and Li₂? (2019 Main, 9Jan I)
 (a) Both are unstable
 - (b) Li_2 is unstable and Li_2 is stable
 - (c) Both are stable
 - (d) Li_2 is stable and Li_2 is unstable
- 8. According to molecular orbital theory, which of the following will not be a viable molecule? (2018 Main) (a) He_2^2 (b) He_2 (c) H_2 (d) H_2^2
- **9.** Which of the following species is not paramagnetic? (2017 Main)

(a) NO (b) CO (c) O_2 (d) B_2

- **10.** Assuming 2s-2p mixing is not operative, the paramagnetic species among the following is (2014 Adv.)
 (a) Be₂ (b) B₂ (c) C₂ (d) N₂
- 11. Stability of the species Li₂, Li₂ and Li₂ increases in the order of (2013 Main)
 (a) Li₂ Li₂ Li₂ (b) Li₂ Li₂ Li₂
 - (c) Li_2 Li_2 Li_2 (d) Li_2 Li_2 Li_2
- 12. In which of the following pairs of molecules/ions both the species are not likely to exist? (2013 Main)
 (a) H₂⁺, He₂² (b) H₂, He₂² (c) H₂², He₂ (d) H₂, He₂²⁺

- Hyperconjugation involves overlap of which of the following orbitals? (2008, 3M)
 (a) (b) p (c) p p (d) -
- **14.** According to *M*O theory, (2004, 1M) (a) O_2^+ is paramagnetic and bond order greater than O_2
 - (b) O_2 is paramagnetic and bond order less than O_2
 - (c) O_2 is diamagnetic and bond order is less than O_2
 - (d) O₂ is diamagnetic and bond order is more than O₂
- 15. Molecular shape of SF₄, CF₄ and XeF₄ are (2000, 1M)
 (a) the same, with 2, 0 and 1 lone pair of electrons respectively
 (b) the same, with 1, 1 and 1 lone pair of electrons respectively
 (c) different, with 0, 1 and 2 lone pair of electrons respectively
 (d) different, with 1, 0 and 2 lone pair of electrons respectively
- **16.** In compounds of type ECl_3 , where E = B, P, As or Bi, the angles Cl E Cl is in order (1999, 2M) (a) B > P = As = Bi (b) B > P > As > Bi(c) B < P = As = Bi (d) B < P < As < Bi
- **17.** The correct order of increasing C O bond length of CO, CO_3^2 , CO_2 is (1999, 2M) (a) $CO_3^2 < CO_2 < CO$ (b) $CO_2 < CO_3^{2-} < CO$ (c) $CO < CO_3^{2-} < CO_2$ (d) $CO < CO_2 < CO_3^{2-}$
- **18.** Which contains both polar and non-polar bonds? (1997, 1M) (a) NH_4Cl (b) HCN (c) H_2O_2 (d) CH_4
- 19. Which one among the following does not have the hydrogen bond? (1983, 1M)
 (a) Phenol (b) Liquid NH₃
 (c) Water (d) HCl

Objective Question II

(One or more than one correct option)

- 20. According to molecular orbital theory, which of the following statements is(are) correct? (2016 adv.)
 (a) C₂² is expected to be diamagnetic
 - (b) O_2^2 is expected to be dramagness (b) O_2^2 is expected to have a longer bond length than O_2
 - (c) N_2 and N_2 have the same bond order
 - (d) He₂ has the same energy as two isolated He atoms
- 21. Hydrogen bonding plays a central role in which of the following phenomena? (2014 Adv.)
 - (a) Ice floats in water
 - (b) Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions
 - (c) Formic acid is more acidic than acetic acid
 - (d) Dimerisation of acetic acid in benzene
- 22. Which one of the following molecules is expected to exhibit diamagnetic behaviour? (2013 Main)
 (a) C₂ (b) N₂ (c) O₂ (d) S₂

1, 2

2, 3

1

1

t

3

4

(b) 1, 4

(d) 3

Assertion and Reason

Read the following questions and answer as per the direction given below:

- (a) Statement I is correct; Statement II is correct; Statement II is the correct explanation of Statement I.
- (b) Statement I is correct; Statement II is correct; Statement II is not the correct explanation of Statement I.
- (c) Statement I is correct; Statement II is incorrect.
- (d) Statement I is incorrect; Statement II is correct.

23. Statement I The electronic structure of O_3 is

Statement II O

O structure is not allowed

because octet around O cannot be expanded.

Match the Columns

24. Match the reactions in Column I with nature of the reactions/type of the products in Column II. (2007, 6M)

	Colum	ı I		Column II
А.	O ₂	$O_2 + O_2^2$	1.	Redox reaction
В.	$CrO_4^2 + H^+$		2. One of the products 1 trigonal planar structu	

	Col	umn I	[Colun	nn II			
C.	$\frac{\text{MnO}_4 + \text{NO}_2}{\text{+ H}^+}$		3.	Dime tetrah		dged metal	ion			
D.	$NO_3 + H_2SO_4 + Fe^{2+}$				4.	Dispr	oporti	onatic	on	
Co	des A	В	С	D		А	В	С	D	

Integer Questions

1,4

3

3

1

4

4

(a) 2

(c) 2

25. Among H₂, He₂, Li₂, Be₂, B₂, C₂, N₂, O₂ and F₂, the number of diamagnetic species is
(Atomic numbers : H 1, He 2, Li 3, Be 4, B 5, C 6, N 7, O 8, F 9)

Subjective Questions

- **26.** Write the MO electron distribution of O₂. Specify its bond order and magnetic property. (2000, 3M)
- 27. Arrange the following as stated.
 "Increasing strength of hydrogen bonding (X H X)."
 O, S, F, Cl, N (1991, 1M)
- **28.** What effect should the following resonance of vinyl chloride have on its dipole moment? (1987, 1M) $CH_2 = CH \quad Cl \quad CH_2^- \quad C \quad HCl$

Answers

(1998, 2M)

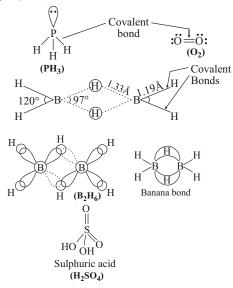
1. (d)	2. (c)	3. (b)	4. (a)
5. (a)	6. (b)	7. (b)	8. (b)
9. (a)	10. (a)	11. (c)	12. (c)
13. (b, d)	14. (1)	15. (c)	16. (2)
17. F	18. T	23. (80.2%)	
Topic 2			
1. (d)	2. (b)	3. (c)	4. (d)
5. (d)	6. (c)	7. (a)	8. (d)
9. (d)	10. (a)	11. (a)	12. (d)
13. (d)	14. (b)	15. (a)	16. (a)
17. (c)	18. (a)	19. (b)	20. (a)
21. (b)	22. (d)	23. (a)	24. (b)
25. (b)	26. (c)	27. (b)	28. (c)
29. (d)	30. (b)	31. (a)	32. (a)
33. (a)	34. (a)	35. (a)	36. (c)
37. (c)	38. (c)	39. (d)	40. (b)
41. (b)	42. (a)	43. (a)	44. (c)
45. (b, c)	46. (a, c)	47. (b, c, d)	48. (a, b)

49.	(c) A 2; B	3;	C 1; l	D 4			
50.	(b) A p, q,	r, t;	B q, 1	:, s, t; C	p, q, r, t;	D	p, r, s,
51.	N ₂ O, I ₃	52.	increase	es, decre	ases		
53.	three centre	bond-	-two ele	ctrons			
54.	hyperconjuga	ation					
55.	sp	56. ⁴	Triangu	lar plan	ar	57.	sp ³
58.	HCOOH and	CH ₃	СООН	59.	CO_2	60.	F
61.	F	62.	F	63.	F	64.	F
65.	Т	66.	(6)	68.	(4)	69.	(6)
Тор	ic 3						
1.	(b)	2.	(c)	3.	(a)	4.	(a)
5.	(a)	6.	(c)	7.	(d)	8.	(d)
9.	(b)	10.	(c)	11.	(b)	12.	(c)
13.	(b)	14.	(a)	15.	(d)	16.	(b)
17.	(a)	18.	(c)	19.	(d)	20.	(a, c)
21.	(a, b, d)	22.	(a,b)	23.	(a)		
24.	(b) A 1, 4;	В	3; C	1, 2; D	1	25.	(6)

Topic 1

Hints & Solutions

Topic 1 Preliminary Concepts of Electrovalent and Covalent Bonding


1. Key Idea Isoelectronic species contains same number of electrons.

The species with its atomic number and number of electrons are as follows :

Species (ions)	At. no. (Z)	No. of electrons
N ³	7	7 3 10
O^2	8	8 2 10
F	9	9 1 10
Na	11	11 1 10
Li	3	3 1 2
Mg^2	12	12 2 10

Thus, option (d) contains isoelectronic set of ions.

2. KCl is the only ionic compound. The structure of PH_3 , O_2 , B_2H_6 and H₂SO₄ are given below

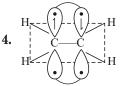
All bond between S and O atom are covalent bonds.

3. Ion-ion interaction is dependent on the square of distance, i.e. ion-ion interaction

Similarly, ion-dipole interaction

London force $\frac{1}{r^6}$ and dipole-dipole interaction

Superficially it seems as both ion-dipole interaction and hydrogen bonding vary with the inverse cube of distance between the molecules but when we look at the exact expressions of field (force) created in two situations, it comes as

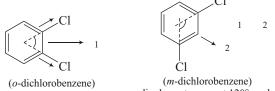

$$|E|$$
or $|F| = \frac{2|P|}{4r^3}$ (In case of ion-dipole interaction)

$$\operatorname{nd} F \quad \frac{2q^2r - 4q^2a}{4}$$

aı

(In case of dipole-dipole interaction)

From the above, it is clear that the ion-dipole interaction is the better answer as compared to dipole-dipole interaction, i.e. hydrogen bonding.



Pi bond is formed by the *p*-orbitals whose lobes have minima in the plane of molecule, hence molecular plane is the nodal plane of pi-bond.

- **5.** H-bond is the strongest intermolecular force. All are different with 1, 0 and 2 lone pairs of electrons at central atom.
- 6. *p*-dichlorobenzene is non-polar.

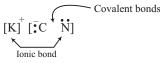
The two dipole vectors cancelling each other giving zero resultant dipole moment. o-dichlorobenzene has greater dipole moment than meta-isomer.

dipole vectors are at 60° angle

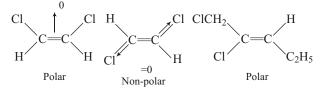
dipole vectors are at 120° angle

Toluene is less polar than both ortho and para dichlorobenzene. Therefore, the increasing order of dipole moment is

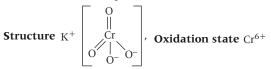
p-dichlorobenzene (IV) \leq toluene (I) \leq *m*-dichlorobenzene (II) < *o*-dichlorobenzene (III)


7. The carbide (C_2^2) ion has the following bonding pattern:

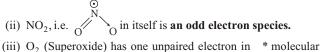
 $\cdot \overline{C}$ \overline{C} : one sigma and two pi bonds.


- **8.** BF_3 has triangular planar arrangement. Three identical vectors acting in outward direction at equal angles in a plane cancel each other giving zero resultant, hence non-polar.
- **9.** Strongly electropositive, univalent X will form an 1:1 ionic compound with strongly electronegative, univalent Υ.

10. H_2 is a covalent, diatomic molecule with a sigma covalent bond between two hydrogen atoms.

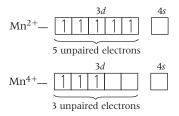

- 11. N_2 has triple bond and each covalent bond is associated with one pair of electrons, therefore, six electrons are involved in forming bonds in N_2 .
- **12.** In KCN, the bonding between potassium ion and cyanide ion is ionic while carbon and nitrogen are covalently bonded in cyanide ion as:

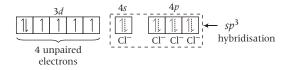
13. 1,4-dichlorobenzene is non-polar, individual dipole vectors cancel each other.



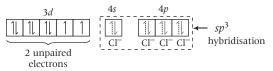
14. Among the given species only $K_2 CrO_4$ is diamagnetic as central metal atom Cr in it has $[Ar]3d^0$ electronic configuration i.e., all paired electrons. The structure and oxidation state of central metal atom of this compound are as follows

Rest all the compounds are **paramagnetic**. Reasons for their paramagnetism are given below

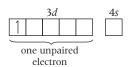

(i) H-atom have $1s^1$ electronic configuration, i.e. 1 unpaired electron.


- orbital.
- (iv) S_2 in vapour phase has O_2 like electronic configuration i.e., have 2 unpaired electrons in * molecular orbitals.
- (v) Mn_3O_4 has following structure

$$Mn$$
 Mn Mn Mn Mn Mn Mn Mn


Thus, Mn is showing +2 and +4 oxidation states. The outermost electronic configuration of elemental Mn is $3d^54s^2$. Hence, in both the above oxidation states it has unpaired electrons as

(vi) $(NH_4)_2$ FeCl₄ has Fe as central metal atom with +2 oxidation state. The electronic configuration of Fe²⁺ in the complex is


(vii) (NH₄)₂NiCl₄ has Ni as central metal atom with +2 oxidation state. The electronic configuration of Ni²⁺ in the complex is

(viii) $In K_2MnO_4$ central metal atom Mn has +6 oxidation state with following structure

Electronic configuration of Mn^{6+} is

- **15.** Statement I is correct but Statement II is incorrect. The covalency in LiCl is due to small size of Li ion which brings about large amount of polarisation in bond.
- **16.** These are 2 -bonds in a nitrogen molecule.
- **17.** The resultant of individual bond dipoles may or may not be non-zero.
- **18.** Linear overlapping of *p*-orbitals form sigma bond while sidewise overlapping of two *p*-orbitals forms a pi bond.
- **19.** $Li^+ < Al^{3+} < Mg^{2+} < K^+$
- **20.** Ag⁺ is stronger Lewis acid because it can easily accommodate lone pair of electrons from Lewis base. On the other hand, Na⁺ has noble gas configuration, cannot accept lone pair of electron, not at all a Lewis acid.
- **21.** I_2 is Lewis acid because I coordinate its one lone pair to I_2 .
- **22.** Both LiF and LiI are expected to be ionic compounds. However, LiI is predominantly covalent because of small size of Li⁺ and large size of iodide ion. A smaller cation and a larger anion introduces covalency in ionic compound.
- **23.** Dipole moment is calculated theoretically as

24. In hydrogen peroxide (H_2O_2) , oxygen is in -1 oxidation state, can be oxidised to O_2 (zero oxidation state) or can be reduced to H_2O (-2 oxidation state of oxygen).

Hence, H_2O_2 can act as both oxidising agent and reducing agent. With strong oxidising agent like KMnO₄, H_2O_2 acts as a reducing agent while with strong reducing agent like $H_2C_2O_4$, it acts as an oxidising agent.

- **25.** (i) **Melting points** Ionic compounds have higher melting points than covalent compounds.
 - (ii) **Boiling points** Ionic compounds have higher boiling points than covalent compounds.
 - (iii) **Solubility** Ionic compounds have greater solubility in water than a covalent compound.
 - (iv) **Conductivity in aqueous solution** Ionic compounds have greater electrical conductivity in aqueous solution while covalent compounds are usually non-conducting.

Topic 2 VBT, Hybridisation and VSEPR Theory

1. Among the given statements, correct statements are I and III only. Valence bond theory (VBT) cannot explain the colour exhibited by transition metal complexes. This theory cannot distinguish ligands as weak and strong field ones.

2. For ICl₅
H
$$\frac{1}{2}$$
 (7 5 0 0) 6 (sp^3d^2)
Cl p^3d^2 hybridised
Geometry : Octahedral
Shape / Structure : Square pyramidal
For \ddot{I} Cl₄
H $\frac{1}{2}$ (7 4 0 1) 6 (sp^3d^2)
Cl p^3d^2 hybridised
Geometry : Octahedral
Shape/Structure : Square planar

So, ICl_5 and ICl_4 are isolobal but not isostructural.

3. Key Idea The hybridisation for a central atom in a species can be calculated using formula

$$H = \frac{1}{2}(V = M = C = A)$$

where, H No. of hybridised orbitals used by central atoms. V No. of valence electrons of the central atom.

- M No. of mono-valent atoms (bonded).
- *C* No. of cationic (positive) charge.
- A No. of anionic (negative) charge.

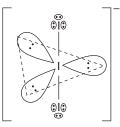
The hybridisation of given species are as follows :

• For [ICl₂] and [BrF₂]

$$H = \frac{1}{2}(7 - 2 - 0 - 1) - 5(sp^{3}d)$$
• For [ICl₄],

$$H = \frac{1}{2}(7 - 4 - 0 - 1) - 6(sp^{3}d^{2})$$
• For [IF₆],

$$H = \frac{1}{2}(7 - 6 - 0 - 1) - 7(sp^{3}d^{3})$$

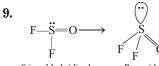

4. The radius of isoelectronic species is inversely proportional to their nuclear charge or atomic number (*Z*). Thus, greater the value of *Z*, lesser the radii of isoelectronic species.

5.

э.			
Species	Valence MOs	$\frac{N_b - N_a}{2}$	Paramagnetic/ Diamagnetic Nature
NO(15e)	$ \begin{bmatrix} 8e \end{bmatrix} 2p_x^2 & 2p_y^2 & 2p_z^2 \\ * 2p_x^1 & * 2p_y^0 & * & pz^0 \\ \begin{bmatrix} 8e \end{bmatrix} & 2p_x^2 & 2p_y^2 & 2p_z^2 \end{bmatrix} $	$\frac{6}{2}$ 1 2.5	Paramagnetic
NO (14e)		$\frac{6 \ 0}{2} \ 3$	Diamagnetic
	$*2p_x^0$ $*2p_y^0$ $*2p_z^0$		
$R_2(14e)$	$\begin{bmatrix} 8e & 1 & 2p_x^2 & 2p_y^2 & p_z^2 \\ * 2p_x^0 & * 2p_y^0 & 2p_z^0 \end{bmatrix}$	$\frac{6 \ 0}{2} \ 3$	Diamagnetic
$N_2(13e)$		$\frac{50}{2}$ 2.5	Paramagnetic
	$[8e] 2p_x^2 - 2p_y^2 - 2p_{z^1}$	2	
	$* 2p_x^0 \qquad * 2p_y^0 \qquad * 2p_z^0$		
/	$\begin{bmatrix} 8e \end{bmatrix} 2p_{z}^{2} 2p_{x}^{2} 2p_{y}^{2} \\ * 2p_{x}^{1} & * 2p_{y}^{1} & * 2p_{z}^{0} \end{bmatrix}$	$\frac{6}{2}$ 2	Paramagnetic
$\bigvee_{-e}^{-e} O_2 (15e)$	$[8e] 2p_z^2 2p_x^2 2p_y^2$	6 1	
+2e		$\frac{3}{2}$ 2.5	Paramagnetic
[•] O ₂ ² (18 <i>e</i>)	$*2p_x^2$ $*2p_y^2$ $*2p_z^0$	$\frac{6}{2}$ 4 1	Diamagnetic

So, only in the conversion of NO NO⁺, the bond order has increased (2.5 3) and paramagnetic character has changed to diamagnetic.

6. The structure of I_3 ion is


Hence, 9 is the correct answer.

7. Isoelectronic species are those which contains same number of electrons.

Species	Atomic number	Number of electrons
O ²	8	10
F	9	10
Na	11	10
Mg ²	12	10
0	8	9
Na	11	11
Mg	12	11

Option (a) is correct which contains isoelectronic species $O^2\,$, $F\,$, Na $\,$, $Mg^2\,$.

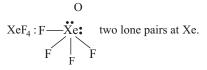
8. I₃ is an ion made up of I₂ and I which has linear shape. While Cs is an alkali metal cation.

 SO_3 is planar (S is sp^2 hybridised), BrF_3 is T-shaped and SiO_3^2 is planar (Si is sp^2 hybridised).

10. For molecules lighter than O_2 , the increasing order of energies of molecular orbitals is

$$1s * 1s 2s * 2s 2p_z 2p_z * 2p_x * 2p_z * 2p_z 2p_z$$

where, $2p_y$ and $2p_z$ are degenerate molecular orbitals, first singly occupied and then pairing starts if Hund's rule is obeyed. If Hund's rule is violated in B₂, electronic arrangement would be


$$1s^{2*}1s^{2} + 2s^{2*}2s^{2} + 2s^{2} + 2p_{y}^{2}$$
.

No unpaired electron-diamagnetic.

Bond order
$$\frac{\text{bonding electrons}}{2}$$

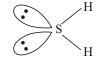
$$\frac{6}{2}$$
 4 1

- **11.** The bond order of CO = 3. NO⁺, CN and N₂ are isoelectronic with CO, have the same bond order as CO. NO (16*e*) has bond order of 2.
- **12.** O_2 in KO₂ has 17 electrons, species with odd electrons are always paramagnetic.
- **13.** ClO_3 : O Cl O one lone pair at Cl.

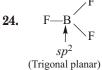
$$SF_4: F$$
 one lone pair at S.
 $SF_4: F$
 F
 F

 I_3 : I I I three lone pairs at central iodine.

14. $\begin{array}{c} 0 \\ F \\ F \\ F \\ F \end{array}$ At central atom (Xe), there is one lone pair.


- **15.** NO₃ and CO₃² both have 32 electrons, central atom sp^2 hybridised, triangular planar.
- **16.** CH_3Cl has the highest dipole moment.
- 17. O₂ has odd number(17) of electrons, therefore it must contain at least one unpaired electron.
 F H

18. F B N H Both 'B' and 'N'
$$sp^3$$
 tetrahedral.
F H


- **19.** $NH_3 sp^3$, $[PtCl_4]^2 dsp^2$, $PCl_5 sp^3d$, $BCl_3 sp^2$
- **20.** All three have 14 electrons (iso electronic) with bond order of three.

21.
$$\overset{+}{\underset{sp}{\longrightarrow}}$$
 $\overset{-}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$ $\overset{+}{\underset{sp}{\longrightarrow}}$

- **22.** ${}^{1}_{CH_2} = {}^{2}_{CH} {}^{3}_{CH_2} {}^{4}_{CH_2} {}^{5}_{C} {}^{6}_{CH}$ Hybridisation at C₂ sp^2 and at C₃ sp^3 .
- **23.** H_2S has sp^3 hybridised sulphur, therefore, angular in shape with non-zero dipole moment.

(Non-linear, polar molecule)

- (mgonar pianar)
- **25.** Sulphur in SO₂ is sp^2 -hybridised.

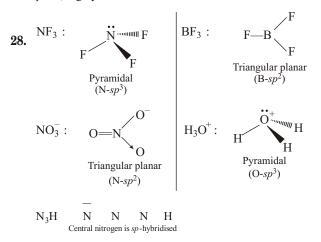
Electron pair 2(-bonds) + 1 (lone pair) = 3 Hybridisation sp^2

Carbon in CO₂ is *sp*-hybridised, N in N₂O is *sp*-hybridised, carbon in CO is *sp*-hybridised.

26. Molecular orbital electronic configuration are

KO₂ (O₂):
$$1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} \\ 2p_{z}^{2} \end{vmatrix} + 2p_{y}^{2} + 2p_{x}^{0}$$

Has one unpaired electron in ${}^{*}2p$ orbital.

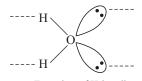

AlO₂ has both oxygen in O² state, therefore, no unpaired electron is present. BaO₂ (O²₂)

$$\frac{1}{18^{2} \cdot 18^{2}} \frac{1}{28^{2} \cdot 28^{2}} \frac{2}{28^{2}} \frac{2}{2} \frac{2}{2} \frac{p_{y}^{2}}{2p_{z}^{2}} \frac{2}{2} \frac{p_{z}^{2}}{2p_{z}^{2}} \frac{p_{z$$

Has no unpaired electron.

NO₂ has [O=N=O] bonding, hence no unpaired electron.

27. N_2 is a neutral, non-polar, inert molecule while CN is a highly polar, highly active ion.

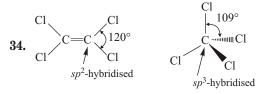

Therefore, NF₃, H₃O and BF₃, NO₃ pairs have same shape.

29. BF_3 has triangular planar arrangement.

$F \longrightarrow F$ $F \longrightarrow F$ sp^2 -hybridised

There identical vectors acting in outward direction, at equal angles in a plane, cancel each other giving zero resultant, hence non-polar.

30. A water molecule can form at the most four H-bonds.



Four sites of H-bonding

31. 0 Cl = 0

electron pairs at Cl = 2 (-bonds) + 2 (lone-pairs) = 4 Hybridisation at Cl = sp^3

- **32.** PCl_3 has sp^3 -hybridised phosphorus, with one lone pair. Therefore, molecule has pyramidal shape like ammonia.
- **33.** O_2 has odd number of electrons, hence it is paramagnetic.

- **35.** CO_2 is linear because carbon is *sp*-hybridised.
- **36.** In CH_3^+ , there are only three electron pairs around carbon atom giving sp^2 -hybridisation state.

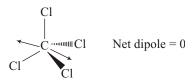
37. Dipole vectors in *trans*-1, 2-dichloroethylene are at 180° and directed in opposite direction, cancelling each other.

$$H C = C H dipole moment = 0$$

38. In SO_2 , the Lewis-dot structure is

$$0 = S = 0$$

Electron pairs at S 2(-bonds) + 1 (lone-pair) $3 sp^2$ hybridised.

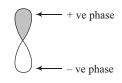

NOTE

-bonded electrons are not present in hybrid orbitals, therefore not counted in electron pairs. Rather bonds are formed by lateral overlapping of pure *p*-orbitals.

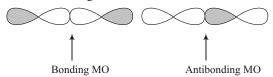
- **39.** Bonds between identical non-metal is purely covalent due to same electronegativities of the bonded atoms. Hence, the bonded atoms have equal holds on the shared pair of electrons.
- **40.** Hybridisation of one 's' and one 'p' orbitals gives two sp hybrid orbitals oriented linearly at 180°.

s p = 2sp hybrid orbitals

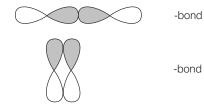
41. CCl_4 has a regular tetrahedral shape.

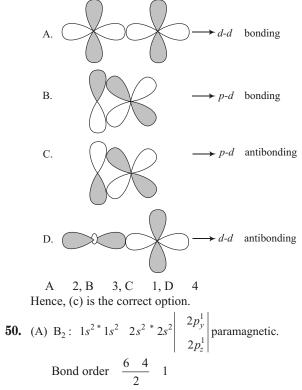


- **42.** CO has a total of 14 electrons and CN also has 14 electrons. C(6e) + N(7e) + e CN (14e)
- **43.** CO_2 is a linear molecule because of *sp*-hybridisation around carbon atom.
- **44.** For non-polar MX_3 , it must have triangular planar arrangement, i.e. there should be sp^2 -hybridisation around M.


45.
$$H_3C$$
 C CH_3 H_3C $C = C$ H_3
 CH_3 CH_3 CH_2CH_3 CH_2CH_3

$$\begin{array}{c|c} CH_{3}H_{2}C \\ H \end{array} \begin{array}{c} CH_{2}CH_{3} \\ H \end{array} \begin{array}{c} CH_{2}CH_{3} \\ H \end{array} \begin{array}{c} CH_{2}CH_{3} \\ H \\ H \end{array} \begin{array}{c} CH_{3}CH_{3} \\ H \\ CH_{3}CH_{3} \\ CH_{3}CH_{3} \\ Symmetric, non-polar \end{array}$$


- **46.** CN and NO^+ are isoelectronic, have the same bond order of 3.
- 47. S = C = S O = N = O O C NLinear Linear Linear Cl O S OBent Cl O Bent
- **48.** CO_2 , $HgCl_2$, C_2H_2 are all linear.
- **49. PLAN** This problem includes basic concept of bonding. It can be solved by using the concept of molecular orbital theory.


Any orbital has two phase +ve and -ve. In the following diagram, +ve phase is shown by darkening the lobes and -ve by without darkening the lobes.

When two same phase overlap with each other, it forms bonding molecular orbital otherwise antibonding.

On the basis of above two concepts, correct matching can be done as shown below:

Bond is formed by mixing of s and p orbitals. B₂ undergoes both oxidation and reduction as

$$\begin{array}{c|cccc}
B_{2} + O_{2} & Heat \\
B_{2} + O_{2} & B_{2}O_{3} & (Oxidation) \\
B_{2} + H_{2} & B_{2}H_{6} & (Reduction) \\
(B) N_{2} : 1s^{2} * 1s^{2} & 2s^{2} * 2s^{2} & 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} \\ 2p_{z}^{2} \end{vmatrix} diamagnetic. \\
Bond order & \frac{10}{2} & 3 & 2
\end{array}$$

N2 undergoes both oxidation and reduction as

$$N_2 + O_2$$
 NO
 $N_2 + 3H_2$ Catalyst NH₂

In N_2 , bonds are formed by mixing of s and p orbitals.

(C) O₂ :
$$1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} & *2p_{y}^{2} \\ 2p_{z}^{2} & *2p_{z}^{2} \end{vmatrix} * 2p_{x}^{0}$$

Paramagnetic with bond order 1.5. O₂ undergoes both oxidation and reduction and bond involves mixing of *s* and *p*-orbitals.

(D) O₂:
$$1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} & *2p_{y}^{1} \\ 2p_{z}^{2} & *2p_{x}^{1} \end{vmatrix} * 2p_{x}^{0}$$

Paramagnetic with bond order 2. O_2 undergoes reduction and the bond involves mixing of *s* and *p*-orbitals.

51. N_2O and I_3 are linear species.

- **52.** Bond order in N_2 is 3 while same in N_2^+ is 2.5, hence bond distance increases as N_2 goes to N_2^+ . Bond order in O_2 is 2 while same in O_2^+ is 2.5, hence bond distance decreases as O_2 goes to O_2^+ .
- **53.** Three centred-2 electrons.
- 54. Hyperconjugation involves delocalisation of -electrons.
- 55. sp-hybridised.
- **56.** Triangular planar. Carbon in CH_3^+ is sp^2 hybridised.
- **57.** sp^3 -hybrid orbital holding the lone pair is involved in formation of ammonium ion.

0

- **58.** H C OH and CH_3 C OH. Both are capable of forming H-bonds.
- **59.** CO₂, it is 180°.

Ο

- **60.** Dipole moment () q.d Since electronegativity of F and Cl are very close, it is the internuclear distance (d) that decides dipole moment here. Hence, C Cl bond has greater dipole moment the C-F bond.
- **61.** H_2O is V-shaped molecule.

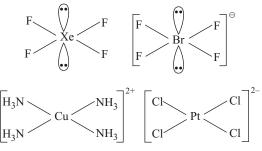
62. False


- **63.** In sp^3 -hybrid orbital, there is 25 % *s*-character and 75 % *p*-character.
- **64.** Carbon in benzene is sp^2 -hybridised, i.e. uses only two of its *p*-orbitals in hybridisation.
- **65.** Sn in SnCl₂ has sp^2 -hybridisation.

66.	S.N.	Species	No. of -bonds with central atom	No. of L.P at central atom
	(i)	$\ln [TeBr_6]^2$	6	1
	(ii)	In [BrF ₂]	2	2
	(iii)	In SNF ₃	4	0
	(iv)	In [XeF ₃]	3	3

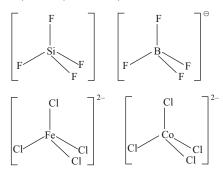
67. Cl Be Cl N N N

sp

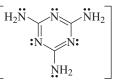

All the above mentioned molecules/ions have *sp*-hybridised central atom and no one pair at central atom, hence linear also. Others are :

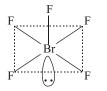
[Although ICl_2^- , I_3^- and XeF_2 all also are linear but in them *d*-orbital contribute in hybridisation.]

68. PLAN This problem includes concept of hybridisation using VBT, VSEPR theory, etc.,


XeF₄, BrF₄, $[Cu(NH_3)_4]^2$, $[PtCl_4]^2$ are square planar as shown below:

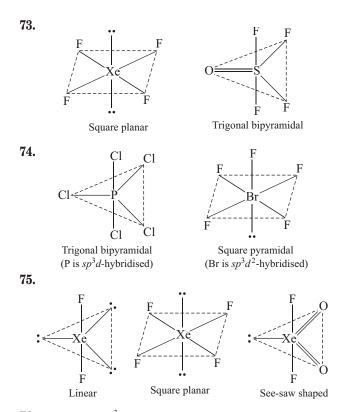
 SF_4 (*See-saw*) as shown below:


 $SiF_4,\,BF_4$, $\left[FeCl_4\,\right]^2\,$, $\left[CoCl_4\,\right]^2\,$ are tetrahedral as shown below:


Hence, correct integer is 4.

70.

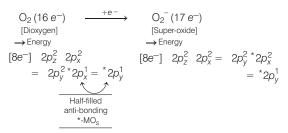
69. PLAN Melamine is a heterocyclic compound.



Each nitrogen atom has one pair of lone pair. Thus, in all six lone pairs.

Lone pair would push the Br—F bond pairs in upward direction and all Br—F bond angles will contract.

- **71.** No, (i) NMe₃ is pyramidal while (ii) N(SiMe₃)₃ is planar. In the latter case, p d back bonding between N and Si makes N sp^2 -hybridised.
- **72.** Bond order : O_2 1.5, $O_2 = 2$, $O_2^+ = 2.5$ Bond length : $O_2^+ < O_2 < O_2$


76. In H_2S , S is sp^3 -hybridised with two lone pairs of electrons on it giving V-shaped (water like) shape. In PCl₃, P is sp³-hybridised with one lone pair of electrons on it. Therefore, PCl₃ is pyramidal in shape.

77. F O F

$$F$$
 O F
 F O Stand
 F O C
 F O O And Cl Cl (Cl₂)
 F O O O Cl Cl (Cl₂)
 F O O O F
(ii) CO₃² : C O O F
(iii) CN : C N and C O (CO)
(iv) NCS : S C N and Cl C N (ClCN)

Topic 3 Resonance, LCAO, MOT, Other Bonding Types

1. The change of O_2 to O_2 can be as follows:

So, in the formation of O_2 from O_2 , the 17th electron goes to the

 $2p_x$ or $2p_y$ molecular orbital (anti-bonding) which is half-filled in O₂.

2. HF has highest boiling point among hydrogen halides because it has strongest hydrogen bonding. Here, the hydrogen bond exists between hydrogen of one molecule and fluorine atom of another molecule as shown below.

In this molecule, hydrogen bond behaves like a bridge between two atoms that holds one atom by covalent bond and the other by hydrogen bond.

3. Key Idea Magnetic nature can be detected by molecular orbital theory. Presence of unpaired electrons means paramagnetic and absence of unpaired electrons means diamagnetic in nature.

Among the given options, CO is a diamagnetic molecule. It can be proved by molecular orbital (MO) theory. The electronic configuration of given diatomic molecules are given below.

• CO (Number of electrons 14)

Electronic configuration
$$1s^2$$
, $*1s^2$, $2s^2$, $*2s^2$,

$$p_z^2$$
, $2p_x^2$ $2p_z^2$

Since, there is no unpaired electron in the CO molecule, so it is diamagnetic.

• NO (Number of electrons 15)

Electronic configuration $1s^2$, $*1s^2$, $2s^2$,

* $2s^2$, $2p_z^2$, $2p_x^2$, $2p_y^2$, * $2p_x^1$, * $2p_y^0$

Since, NO has one unpaired electron in ${}^{*}2p_x^1$ orbital, so it is paramagnetic.

• B_2 (Number of electrons 10)

Electronic configuration $1s^2$, $*1s^2$, $2s^2$, $*2s^2$, $2p_x^1$ p_v^1 Since, two unpaired electrons are present in $2p_x^1$ and $2p_y^1$ orbital. So, it is paramagnetic.

• O₂ (Number of electrons 16)

Electronic configuration $1s^2$, $*1s^2$, $2s^2$, $*2s^2$, $2pz^2$, $2p_x^2$, $2p_y^2$, $*2p_x^1$, $*2p_y^1$ Electronic configuration

Since, two unpaired electrons are present in ${}^{*}2p_{x}^{1}$ and ${}^{*}2p_{y}^{1}$ orbital. So, it is also paramagnetic.

4. C_2 will be stabilised after forming anion. The electronic configuration of carbon is $1s^2 2s^2 2p^2$. There are twelve electrons in C_2 . After forming anion (i.e. C_2^-), the electronic configuration is

 $2p_{z}^{1}$

•
$$C_2 : (1s)^2 (*1s)^2 (2s)^2 (*2s)^2 (2p_x^2 2p_y^2) (p_z^1) \text{ or } KK (2s)^2 (*2s)^2 (2p_x^2 2p_y^2).$$

Bond order $\frac{1}{2}(N_b N_a) \frac{1}{2}(9 4) 2.5$
For other options such as F_2 , O_2 , NO, the electronic configurations are as follows :
 $F_2 : (1s)^2 (*1s)^2 (2s)^2 (*2s)^2 (2p_z)^2 (2p_x^2 2p_y^2) (*2p_x^2 *2p_y^2) (*2p_z^1)$
Bond order $1/2(N_b N_a) 1/2(10 9) 0.5$
• $O_2 : (1s)^2 (*1s)^2 (2s)^2 (*2s)^2 (2p_z)^2 (2p_x^2 2p_x^2 2p_y^2) (*2p_x^2 *2p_y^1)$
Bond order $\frac{1}{2}(N_b N_a) \frac{1}{2}(10 7) 1.5$
• NO : $(1s)^2 (*1s)^2 (2s)^2 (*2s)^2 (2p_z)^2 (2p_x^2 2p_y^2) (*2p_x^1 *2p_y^1)$
Bond order $\frac{1}{2}(N_b N_a) \frac{1}{2}(10 6) 2$

The value of bond order of C_2 is highest among the given options. Bond order between two atoms in a molecule may be taken as an approximate measure of the bond length.

Species	MO energy order	Bond order (BO)	n, number of unpaired e	Magnetic character
C_2^2 (14 <i>e</i>)	$[8\bar{e}]_{2p_x^2} = 2p_y^2 - 2p_z^2$	$\frac{6 \ 0}{2} \ 3$	0	Diamagnetic
O ₂ (16 <i>e</i>)	$\begin{bmatrix} 8\bar{e} \end{bmatrix}_{2p_{z}^{2}} 2p_{x}^{2} 2p_{y}^{2} 2p_{y}^{1} 2p_{y}^{1} 2p_{y}^{1}$	$\frac{6}{2}$ 2	2	Paramagnetic
O ₂ ² (18 <i>e</i>)	$\begin{bmatrix} 8\bar{e} \end{bmatrix}_{2p_{z}^{2}} 2p_{x}^{2} 2p_{y}^{2} 2p_{y}^{2} 2p_{x}^{2} 2p_{y}^{2}$	$\frac{6}{2}$ 4 1	0	Diamagnetic
N_2^2 (16e)	$[8\overline{e}]_{2p_x^2} \qquad \begin{array}{c} & & & * \\ & & & 2p_y^2 & 2p_z^2 & 2p_x^1 & & & 2p_y^1 \end{array}$	$\frac{6 \ 2}{2} \ 2$	2	Paramagnetic

The bond length decreases as bond order increases. As a result, stability of a molecule increases.

Bond length $\frac{1}{BO \text{ (Bond order)}}$. So order of bond length $\begin{array}{ccc} C_2^2 & O_2 & N_2^2 & O_2^2 \\ (BO & 3) & (BO & 2) & (BO & 1) \end{array}$

The diamagnetic species with shortest bond length is C_2^2 (option-a).

6. The energy order of MOs of the given species are as follows:

$$\begin{array}{rcl} O_{2}(16e \ 's) & 1s^{2}, \ *1s^{2}, \ 2s^{2}, \ *2s^{2}, \ 2p_{z}^{2} \\ & 2p_{x}^{2} & 2p_{y}^{2}, \ *2p_{x}^{1} & \ *2p_{y}^{1}, \\ O_{2} & (15e \ 's) & 1s^{2}, \ *1s^{2}, \ 2s^{2}, \ \ *2s^{2}, \ \ 2p_{z}^{2} \\ & 2p_{x}^{2} & 2p_{y}^{2}, \ \ ^{2}2p_{x}^{1} & \ \ ^{*}2p_{y}^{0} \\ N_{2}(14e \ 's) & 1s^{2} & \ *1s^{2}, \ \ 2p_{z}^{2} \\ & 2p_{x}^{2} & 2p_{y}^{2}, \ \ 2p_{z}^{2} \\ N_{2} & (13e \ 's) & 1s^{2} & \ *1s^{2} & s^{2} & \ \ ^{*}2s^{2} \\ & 2p_{x}^{2} & 2p_{z}^{2} & 2p_{z}^{1} \end{array}$$

Thus, in case of N_2 , two -bonds and half -bond are present in the bonding MOs.

- **7.** Considering molecular orbital theory (MOT) :
 - The electronic configuration of Li₂ (Z 5) $1s^2$, $*1s^2$, $2s^1$ Bond order (BO) $\frac{N_b N_a}{2}$, $\frac{3}{2}$, $\frac{2}{1}$ The electronic configuration of Li₂(Z 7) $1s^2$, $*1s^2$, s^2 , s^1 Bond order (BO) $\frac{N_b N_a}{2}$, $\frac{4}{2}$, $\frac{3}{2}$

For the species having the same value of BO, the specie having lesser number of antibonding electrons $[N_a]$ will be more stable.

Here, N_a of Li₂⁺ (2) N_a of Li₂ (3). So, their order of stability will be Li₂ Li₂.

8. Key Idea According to M.O.T, the viability of any molecule can be judged through the calculation of bond order.

Electronic	Configuration	Bond order
He ₂	$1s^2$ $1s^1$	$\frac{2}{2}$ 1 0.5
H ₂	$1s^2$ $1s^1$	$\frac{2}{2}$ 1 0.5
H_2^2	$1s^2$ $1s^2$	$\frac{2}{2}$ 2 0
He ₂ ²	$1s^2$	$\frac{2 0}{2} 1$

The molecule having zero bond order will not be viable hence, H_2^2 (option d) is the correct answer.

9. To identify the magnetic nature we need to check the molecular orbital configuration. If all orbitals are fully occupied, species is diamagnetic while when one or more molecular orbitals is/are singly occupied, species is paramagnetic.

(a) NO (7 8 15)
$$ls^2$$
, ${}^*ls^2$, $2s^2$, ${}^*2s^2$

One unpaired electron is present. Hence, it is paramagnetic.

(b) CO (6 8 14)
$$1s^2$$
, ${}^*1s^2$, $2s^2$, ${}^*2s^2$,
 $2p_x^2$ $2p_y^2$ $2p_z^2$

No unpaired electron is present. Hence, it is diamagnetic. (c) $O_2 (8 \ 8 \ 16) \ 1s^2, \ {}^*1s^2, \ 2s^2, \ {}^*2s^2, \ 2p_z^2,$

$$2s, 2s, 2p_z, 2p_z^2, 2p_x^2, *2p_x^1 *2p_y^1$$

Two unpaired electrons are present. Hence, it is paramagnetic.

- (d) $B_2(5 \ 5) \ 1s^2$, ${}^*1s^2$, $2s^2$, ${}^*2s^2$, $2p_x^1 \ 2p_y^1$ Two unpaired electrons are present. Hence, it is paramagnetic.
- **10. PLAN** This problem can be solved by using the concept involved in molecular orbital theory. Write the molecular orbital electronic configuration keeping in mind that there is no 2s-2p mixing, then if highest occupied molecular orbital contain unpaired electron then molecule is paramagnetic otherwise diamagnetic.

Assuming that no 2s-2p mixing takes place the molecular orbital electronic configuration can be written in the following sequence of energy levels of molecular orbitals

1s, *1s, 2s, *2s, 2p_z, 2p_x 2p_y, *2p_x *2p_y, *2p_z
(a) Be₂ 1s², *1s², 2s², *2s² (diamagnetic)
(b) B₂ 1s², *1s², 2s², *2s², 2p_z²,
$$\frac{2p_x^0}{2p_y^0}$$
 (diamagnetic)
(c) C₂ 1s², *1s², 2s², *2s², 2p_z², $\frac{2p_x^1}{2p_y^1}$,
* $\frac{2p_x^0}{2p_y^0}$, *2p_z⁰ (paramagnetic)
* $2p_y^0$

(d) N₂
$$1s^2$$
, $*1s^2$, $2s^2$, $2s^2$, $2p_z^2$, $2p_y^2$,
 $*2p_x^0$, $*2p_z^0$ (diamagnetic)
 $*2p_y^0$
Hence, (c) is the correct choice.
11. Li₂ (3 3 6) $1s^2$, $*1s^2$, $2s^2$
Bond order $\frac{N_b}{2}$, $\frac{N_a}{2}$, $\frac{4}{2}$, $\frac{2}{2}$, 1
Li₂ (3 3 1 5) $1s^2$, $*1s^2$, $2s^1$
Bond order $\frac{3}{2}$, $\frac{2}{1}$, $\frac{1}{2}$, 0.5
Li₂ (3 3 1 7) $1s^2$, $*1s^2$, $2s^2$, $*2s^1$
Bond order $\frac{4}{3}$, $\frac{3}{2}$, $\frac{1}{2}$, 0.5
Li₂ (3 3 1 7) $1s^2$, $*1s^2$, $2s^2$, $*2s^1$

Stability order is Li_2 Li_2 Li_2 (because Li_2 has more number of electrons in antibonding orbitals which destabilises the species).

12. Species having zero or negative bond order do not exist.

$$H_{2}^{2} (1 \ 1 \ 2 \ 0) \ 1s^{0}$$

Bond order 0
He₂ (2 2 4) $1s^{2}$, * $1s^{2}$
Bond order $\frac{N_{b} \ N_{a}}{2} \ \frac{2 \ 2}{2} \ 0$
So, both H₂² and He₂ do not exist.

Η

13. H C CH CH_2 H C CH CH_2 H H (II)

I and II are hyperconjugation structures of propene and involves -electrons of C—H bond and *p*-orbitals of pi bond in delocalisation.

Η

14. $O_{2}^{+}(15e): 1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} & * 2p_{y}^{1} \\ 2p_{z}^{2} & * 2p_{z}^{0} \end{vmatrix} * 2p_{x}^{0}$ Bond order $\frac{10}{2}$ 2.5; paramagnetic. $O_{2}(16e): 1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} \\ 2p_{z}^{2} \end{vmatrix} * 2p_{y}^{1} \end{vmatrix} * 2p_{x}$ Bond order $\frac{10}{2}$ 2 Hence, (a) is the correct answer.

- **16.** When E = B in BCl₃, bond angle is 120°. When E = P, As or Bi in ECl_3 , hybridisation at E will be sp^3 . Also, if central atoms are from same group, bond angle decreases down the group provided all other things are similar. Hence, the order of bond angles is $BCl_3 > PCl_3 > AsCl_3 > BiCl_3$
- 1 Bond order **17.** Bond length

Bond order :
$$CO_2 = 2$$
, $CO = 3$, $CO_3^2 = 1$

Therefore, order of bond length is $CO_3^2 = CO_2 < CO$

3 3

18. H₂O₂

19. HCl does not form hydrogen bond. For formation of hydrogen bond, atleast one hydrogen atom must be bonded to one of the three most electronegative atom O, N and F.

20.

Species	Electrons	MOEC	N _B	N_A	BO	Magnetic character
C_2^2	14	$1s^2$, * $1s^2$,	10	4	3	Diamagnetic
		$2s^{2}, * 2s^{2}, 2p_{x}^{2} 2p_{y}^{2}, 2p_{z}^{2}$				
O_2^2	14	As above	10	4	3	Diamagnetic
O ₂	16	according to number of	10	6	2	Paramagnetic
N_2	13	electrons	9	4	2.5	Paramagnetic
N ₂	15		10	5	2.5	Paramagnetic
He ₂	3		2	1	0.5	Paramagnetic

Thus, (a) is correct.

(b) Bond order $O_2^2 = O_2$ thus,

Bond length of O_2^{2+} O_2 thus, incorrect.

- (c) N_2^+ and N_2 have same bond order thus correct.
- (d) He₂ with bond order 0.5 is more stable thus, less energy than isolated He atoms. Thus, (d) is incorrect.
- 21. PLAN This problem can be solved by using concept of H-bonding and applications of H-bonding.
- **22.** C₂ (6 6 12) s^2 , * 1 s^2 , 2 s^2 , * 2 s^2 , 2 p_r^2 $2p_{v}^{2}$

Since, all the electrons are paired, it is a diamagnetic species. N_2 (7 7 14) ls^2 , * ls^2 , $2s^2$,

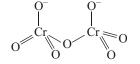
*
$$2s^2 \quad 2p_x^2 \quad 2p_y^2, \quad 2p_z^2$$

It is also a diamagnetic species because of the absence of unpaired electrons.

$$\begin{array}{ccccccc}
O_2 & (8 & 8 & 16) \\
S_2 & 1s^2, & 1s^2, & 2s^2, & 2s^2, \\
2p_z^2, & 2p_x^2 & 2p_y^2 & 2p_x^1 & & 2p_y^1
\end{array}$$

or

Due to the presence of two unpaired electrons, O2 and S2 both are paramagnetic molecules.


23. Statement I is correct, given structure is one of the resonance structure of ozone.

Statement II is also correct because oxygen cannot expand its octet. It is also the explanation for the given structure of ozone.

24. (A) In the reaction : O_2 $O_2 + O_2^2$

Oxygen on reactant side is in $\frac{1}{2}$ oxidation state. In product side, one of the oxygen is in zero oxidation state, i.e. oxidised while the other oxygen is in -1 oxidation state, i.e. reduced. Hence, in the above reaction, oxygen (O^{1/2}) is simultaneously oxidised and reduced disproportionated.

(B) In acidic medium, CrO_4^2 is converted into $Cr_2O_7^2$ which is a dimeric, bridged tetrahedral.

(C) MnO_4 NO₂ H⁺ $Mn^{2+} + NO_{3}$ The above is a redox reaction and a product NO₃ has trigonal planar structure.

- (D) NO₂ $H_2SO_4 + Fe^{2+}$ $Fe^+ + NO$ The above is a redox reaction.
- 25. H_2 , Li_2 , Be_2 , C_2 , N_2 and F_2 are diamagnetic according to molecular orbital theory.

26. O₂:
$$1s^{2*}1s^{2} 2s^{2*}2s^{2} 2p_{x}^{2} \begin{vmatrix} 2p_{y}^{2} \\ 2p_{y}^{2} \end{vmatrix} + 2p_{y}^{1} \\ 2p_{z}^{2} \end{vmatrix} + 2p_{z}^{1}$$

Bond order $\frac{10}{2}$ 6 2, paramagnetic.

27. Strength of hydrogen bonding in X—H—X depends on electronegativity as well as size of X. X with higher electronegativity and smaller size forms stronger H-bond. Hence, increasing order of strength of H-bond is S

28. Resonance in vinyl chloride increases polar character of the molecule.