СООН

СООН

Topic 1 Carboxylic Acids

Objective Questions I (Only one correct option)

 Which dicarboxylic acid in presence of a dehydrating agent is least reactive to give an anhydride? (2019 Main, 10 Jan I)

2. In the reaction,

$$CH_{3}COOH \xrightarrow{\text{LiAlH}_{4}} A \xrightarrow{\text{PCl}_{5}} B \xrightarrow{\text{Alc. KOH}} C$$

The product *C* is (2014 Main)

- (a) acetaldehyde (b) acetylene
- (c) ethylene (d) acetyl chloride
- 3. The compound that does not liberate CO₂, on treatment with aqueous sodium bicarbonate solution, is (2013 Adv.)
 (a) benzoic acid
 - (b) benzenesulphonic acid
 - (c) salicylic acid
 - (d) carbolic acid (Phenol)
- 4. An organic compound *A* upon reacting with NH₃ gives *B*. On heating, *B* gives *C*. *C* in the presence of KOH reacts with Br₂ to give CH₃CH₂NH₂. *A* is (2013 Main)
 (a) CH₃COOH
 (b) CH₃CH₂CH₂COOH
 (c) CH₂ CH₂COOH
 - (c) CH_3 —CH— COOH
 - CH₃
 - (d) CH₃CH₂COOH

 The compound that undergoes decarboxylation most readily under mild condition is (2012)

- 6. The carboxyl functional group (—COOH) is present in
 (a) picric acid (2012)
 - (b) barbituric acid
 - (c) ascorbic acid
 - (d) aspirin
 - (d) aspirin
- 7. In the following reaction sequence, the correct structures of *E*, *F* and *G* are

$$\begin{array}{ccc} O & O \\ & & \\ Ph & & \\ & & \\ & & \\ & & \\ \end{array} \xrightarrow{\text{Heat}} [E] \xrightarrow{\text{I}_2} [F] + [G] \end{array}$$

(* implies ¹³C labelled carbon)

(2008, 3M)

(a)
$$E = \frac{O}{Ph} + CH_3 F = \frac{O}{Ph} + OONa G = CHI_3$$

(b)
$$E = \Pr^*_{CH_3} F = \Pr^*_{ONa} G = CHI_3$$

(c)
$$E = \frac{O}{Ph} + \frac{F}{CH_3} = \frac{O}{Ph} + \frac{O}{ONa} = CHI_3$$

(d)
$$E = Ph$$
 CH_3 $F = Ph$ OH_3 $G = CH_3I$

- 8. When benzene sulphonic acid and *p*-nitrophenol are treated with NaHCO₃, the gases released respectively, are (2006, 3M) (a) SO₂, NO₂ (b) SO₂, NO (c) SO₂, CO₂ (d) CO₂, CO₂
- 9. An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be (2003, S, 1M)

 (a) optically active mixture
 (b) pure enantiomer
 (c) *meso* compound
 (d) racemic mixture
- 10. Benzoyl chloride is prepared from benzoic acid by
 (a) Cl₂, hv
 (b) SO₂Cl₂
 (2000, S, 1M)
 (c) SOCl₂
 (d) Cl₂, H₂O
- 11. When propionic acid is treated with aqueous sodium bicarbonate, CO₂ is liberated. The C of CO₂ comes from
 (a) methyl group
 (1999, 2M)
 (b) carboxylic acid group
 - (c) methylene group
 - (d) bicarbonate group

Matching Type Questions

13. The desired product *X* can be prepared by reacting the major product of the reactions in List-I with one or more appropriate reagents in List-II.

(given, order of migratory aptitude : aryl > alkyl > hydrogen)

Topic 2 Acid Derivatives

Objective Questions I

(Only one correct option)

1. The major product of the following reaction is

(a) $P \rightarrow 1$; $Q \rightarrow 2$, 3; $R \rightarrow 1$, 4; $S \rightarrow 2$, 4 (b) $P \rightarrow 1$, 5; $Q \rightarrow 3$,4; $R \rightarrow 4$, 5; $S \rightarrow 3$ (c) $P \rightarrow 1$, 5; $Q \rightarrow 3$,4; $R \rightarrow 5$; $S \rightarrow 2$,4 (d) $P \rightarrow 1$, 5; $Q \rightarrow 2$, 3; $R \rightarrow 1$,5; $S \rightarrow 2$,3

Subjective Questions

- **14.** How will you bring about the following conversion? "Ethanal to 2-hydroxy-3-butenoic acid." (1990, 2M)
 - **2.** The major product of the following reaction is

 The increasing order of the reactivity of the following with LiAlH₄ is (2019 Main, 12 Jan II)

- (b) (A) < (B) < (C) < (D)
- (c) (B) < (A) < (D) < (C)
- (d) (B) < (A) < (C) < (D)
- $(\mathbf{u}) (\mathbf{b}) (\mathbf{n}) (\mathbf{c}) (\mathbf{b})$
- **4.** The major product obtained in the following reaction is (2019 Main, 10 Jan II)

 The decreasing order of ease of alkaline hydrolysis for the following esters is (2019 Main, 10 Jan I)

6. The compounds *A* and *B* in the following reaction are, respectively

$$\xrightarrow{\text{HCHO}+\text{HCI}} A \xrightarrow{\text{AgCN}} B$$
(2019 Main, 9 Jan I)

- (a) A = Benzyl alcohol, B = Benzyl isocyanide
- (b) A = Benzyl alcohol, B = Benzyl cyanide
- (c) A = Benzyl chloride, B = Benzyl isocyanide
- (d) A = Benzyl chloride, B = Benzyl cyanide
- 7. The major product of following reaction is

$$\begin{array}{ccc} R \longrightarrow C \equiv N & \xrightarrow{(i) \operatorname{AIH}(i \cdot \operatorname{Bu})_2} & & \\ & & & \\ & & & \\ & & & \\ (ii) \operatorname{H}_2O & & \\ (ii) \operatorname{H}_2O & & \\ & & \\ (2019 \text{ Main, 9 Jan I}) \\ & & \\ (a) R CHO & & \\ & & \\ (b) R CONH_2 & \\ & & \\ (c) R COOH & & \\ & & \\ (d) R CH_2NH_2 & \\ \end{array}$$

 Different possible thermal decomposition pathways for peroxyesters are shown below. Match each pathway from Column t I with an appropriate structure from Column II and select the correct answer using the code given below the lists. (2014 Adv.)

$$R \xrightarrow{O}_{(\text{Peroxyester})} R' \xrightarrow{R'} R' + R'O' \xrightarrow{Q}_{-\text{CO}_2} \uparrow R' + R'O' \xrightarrow{Q}_{-\text{CO}_2} R' + R'O' \xrightarrow{Q}_{-\text{CO}_2} R' + X' \xrightarrow{R'}_{-\text{Co}_2} R' + X'' \xrightarrow{R'}_{-\text{Co}_2} R' + X'' \xrightarrow{R'}_{-\text{Co}_2} R' + X'' \xrightarrow{R'}_{-\text{Co}_2} R' + R'O' \xrightarrow{R'}_{-\text{CO}_2} R' + R'O'$$

Codes				
	Р	Q	R	S
(a)	1	3	4	2
(b)	2	4	3	1
(c)	4	1	2	3
(d)	3	2	1	4

9. A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is (2013 Main)
 (a) 2 (b) 5

(a)
$$2$$
 (b) 3 (c) 4 (d) 6

10. Which of the following reactants on reaction with conc. NaOH followed by acidification gives the following lactone as the only product? (2006, 5M)

- **11.** Benzamide on treatment with POCl3 gives
(a) aniline
(c) chlorobenzene(2004, S, 1M)
(b) benzonitrile
(d) benzyl amine
- **12.** Ethyl ester $\frac{CH_3MgBr}{(excess)}P$, the product 'P' will be (2003, S, 1M)

The product of acid hydrolysis of P and Q can be distinguished by (2003, S, 1M)

- **14.** Hydrogenation of benzoyl chloride in the presence of Pd on BaSO₄ gives (1992, 1M)

 (a) benzyl alcohol
 (b) benzaldehyde

 (c) benzoic acid
 (d) phenol
- 15. Acetamide is treated separately with the following reagents. Which one of these would give methyl amine? (1983, 1M)
 (a) PCl₅ (b) NaOH + Br₂
 (c) Sodalime (d) Hot conc. H₂SO₄

Objective Questions I

(One or more than one correct options)

16. With reference to the scheme given, which of the given statement(s) about *T*, *U*, *V* and *W* is/are correct? (2012)

- (a) T is soluble in hot aqueous NaOH
- (b) U is optically active
- (c) Molecular formula of W is $C_{10}H_{18}O_4$
- (d) V gives effervescence on treatment with aqueous NaHCO₃

17. Identify the binary mixture(s) that can be separated into individual compounds, by differential extraction, as shown in the given scheme. (2012)

- (a) C_6H_5OH and C_6H_5COOH
- (b) C₆H₅COOH and C₆H₅CH₂OH
- (c) $C_6H_5CH_2OH$ and C_6H_5OH
- (d) $C_6H_5CH_2OH$ and $C_6H_5CH_2COOH$
- 18. Reaction of RCONH₂ with a mixture of Br₂ and KOH gives R—NH₂ as the main product. The intermediates involved in this reaction are (1992, 1M)
 (a) RCONHBr
 - (b) *R*NHBr

$$c) R - N = C = 0$$

(d) RCONBr₂

Assertion and Reason

Read the following questions and answer as per the direction given below :

- (a) Statement I is true; Statement II is true; Statement II is a correct explanation of Statement I.
- (b) Statement I is true; Statement II is true; Statement II is not the correct explanation of Statement I.
- (c) Statement I is true; Statement II is false.
- (d) Statement I is false; Statement II is true.
- **19.** Statement I *p*-hydroxybenzoic acid has a lower boiling point than *o*-hydroxybenzoic acid.

Statement II o-hydroxybenzoic acid has intramolecular
hydrogen bonding.(2007, 3M)

20. Statement I Acetic acid does not undergo haloform reaction. Statement II Acetic acid has no alpha hydrogen. (1998, 2M)

Passage Based Questions

Passage 1

The reaction of compound *P* with CH_3MgBr (excess) in $(C_2H_5)_2O$ followed by addition of H_2O gives *Q*. The compound *Q* on treatment with H_2SO_4 at 0° C gives *R*. The reaction of *R* with CH_3COCl in the presence of anhydrous AlCl₃ in CH_2Cl_2 followed by treatment with H_2O produces compound *S*. [Et in compound *P* is ethyl group]

21. The product *S* is

(2017 Adv.)

22. The reactions, *Q* to *R* and *R* to *S*, are

- (a) Aromatic sulfonation and Friedel-Crafts acylation
- (b) Friedel-Crafts alkylation and Friedel-Crafts acylation
- (c) Friedel-Crafts alkylation, dehydration and Friedel-Crafts acylation
- (d) Dehydration and Friedel-Crafts acylation

Passage 2

P and Q are isomers of dicarboxylic acid C₄H₄O₄. Both decolourize Br₂/H₂O. On heating, P forms the cyclic anhydride. Upon treatment with dilute alkaline KMnO₄. P as well as Q could

- 23. Compounds formed from P and Q are, respectively(a) Optically active S and optically active pair (T, U)
 - (b) Optically inactive S and optically inactive pair (T, U)
 - (c) Optically active pair (T, U) and optically active S
 - (d) Optically inactive pair (T, U) and optically inactive S
- **24.** In the following reaction sequences V and W are respectively

 $RCONH_2$ is converted into RNH_2 by means of Hofmann's bromamide degradation.

In this reaction, *R*CONHBr is formed from which this reaction has derived its name. Electron donating group at phenyl activates the reaction. Hofmann's degradation reaction is an intramolecular reaction. ($2006, 3 \times 4M = 12M$)

- **25.** How can the conversion of (i) to (ii) be brought about?
 - (a) KBr(b) KBr + CH₃ONa
 - (c) KBr + KOH
 - (d) $Br_2 + KOH$
- **26.** Which is the rate determining step in Hofmann's bromamide degradation?
 - (a) Formation of (i)
 - (b) Formation of (ii)
 - (c) Formation of (iii)
 - (d) Formation of (iv)
- **27.** What are the constituent amines formed when the mixture of (1) and (2) undergoes Hofmann's bromamide degradation?

Fill in the Blank

28. Formic acid when heated with conc. H_2SO_4 produces (1983, 1M)

True/False

29. The boiling point of propanoic acid is less than that of *n*-butyl alcohol, an alcohol of comparable molecular weight.

(1991, 1M)

30. Hydrolysis of an ester in the presence of a dilute acid is known as saponification. (1983, 1M)

Integer Type Question

31. The total number of carboxylic acid groups in the product *P* (2013 Adv.) is

Subjective Questions

- **33.** Compound A of molecular formula $C_0H_7O_2Cl$ exists in keto form and predominantly in enolic form B. On oxidation with $KMnO_4$, A gives m-chlorobenzoic acid. Identify A and B. (2003 Main, 2M)
- **34.** (\pm) 2-phenylpropanoic acid on treatment with (+) 2-butanol gives (A) and (B). Deduce their structures and also establish stereochemical relation between them. (2003)
- **35.** Identify X and Y in the following synthetic scheme and write their structures. Explain the formation of labelled

Carboxylic Acids and Their Derivatives **377**

formaldehyde (H_2CO) as one of the products when compound (Z) is treated with HBr and subsequently ozonolysed. Mark the C^{*} carbon in the entire scheme.

$$Ba \overset{\circ}{CO}_{3} + H_{2}SO_{4} \longrightarrow X \quad (\overset{\circ}{C} = C^{14} \text{ gas })$$

$$CH_{2} = CH \longrightarrow Br \xrightarrow{(i) Mg/ether}_{(ii) X} Y \xrightarrow{\text{LiAlH}_{4}} Z$$

$$(ii) H_{3}O^{+} \quad (2001 \text{ Main, 5M})$$

36. Write the structures of the products *A* and *B*.

$$CH_{3} \longrightarrow C \longrightarrow O C_{2}H_{5} \xrightarrow{H_{3}O^{+}} A + B$$
 (2000 Main, 3M)

37. Explain briefly the formation of the products giving the structures of the intermediates

38. Write the structures of the products :

$$CH_3CH_2NH_2 \xrightarrow{(CH_3CO)_2O, heat}$$
(1998)

- **39.** An ester A ($C_4H_8O_2$), on treatment with excess methyl magnesium chloride followed by acidification, gives an alcohol B as the sole organic product. Alcohol B, on oxidation with NaOCl followed by acidification, gives acetic acid. Deduce the structures of A and B. Show the reactions involved. (1998)
- **40.** Complete the following, giving the structures of the principal organic products

(i)
$$(COOH)_2 + (CH_2OH)_2 + EtONa \longrightarrow A$$

(ii) $(COOH)_2 + (CH_2OH)_2 \xrightarrow{\text{conc. } H_2SO_4} \longrightarrow B$
(iii) $H_2CCOCOC_6H_5 + NaOH \xrightarrow{H_3O^+} C$

iii)
$$H_3CCOCOC_6H_5 + NaOH \xrightarrow{H_3O} C$$

- **41.** A hydrocarbon A of the formula C_8H_{10} , on ozonolysis gives compound $B(C_4H_6O_2)$ only. The compound B can also be obtained from the alkyl bromide $C(C_3H_5Br)$ upon treatment with magnesium in dry ether, followed by carbon dioxide and acidification. Identify A, B and C and also give equations for the reactions. (1996, 3M)
- 42. Complete the following sequence of reactions with appropriate structures

$$CH_{3} \longrightarrow CH_{2} \longrightarrow COOH \xrightarrow{\text{Red-P}} A$$

$$A \xrightarrow{\text{(i) Alc. KOH (excess)}} B$$

$$(1995, 2M)$$

(1997, 2M)

43. Which of the following carboxylic acids undergoes decarboxylation easily ? Explain briefly.

(i)
$$C_6H_5COCH_2COOH$$

(ii) $C_6H_5COCOOH$
(iii) $C_6H_5CH(OH)COOH$
(iv) $C_6H_5CH(NH_2)$ COOH (1995, 2M)

44. Predict the major product in the following reaction :

$$C_6H_5$$
— $CH_2COCH_3 \xrightarrow{(i) CH_3MgBr (excess)}$ (1994, 1M)

45. In the following reactions, identify the compounds *A*, *B*, *C* and *D*.

(i) $PCl_5 + SO_2 \longrightarrow A + B$ (ii) $A + CH_3COOH \longrightarrow C + SO_2 + HCl$ (iii) $2C + (CH_3)_2 Cd \longrightarrow 2D + CdCl_2$ (1994, 1M × 4 = 4M)

46. Complete the following sequence of the reactions with appropriate structures

(i)
$$\longrightarrow$$
 SO₃H $\xrightarrow{\text{Fuming}}_{\text{H}_2\text{SO}_4} \cdots \cdots \xrightarrow{1.\text{NaOH}(\text{Fuse})}_{2.\text{H}^+} \cdots \cdots$
(ii) \swarrow CONH₂ $\xrightarrow{\text{P}_2\text{O}_5} \cdots \cdots \xrightarrow{\text{H}^+, \text{H}_2\text{O}}_{\Delta} \cdots \cdots$
(1992, 1M)

47. In the following identify the compounds/reaction conditions represented by the alphabets *A*, *B*, and *C* :

$$C_{6}H_{5}COOH \xrightarrow{PCl_{5}} A \xrightarrow{NH_{3}} B \xrightarrow{P_{2}O_{5}} C_{6}H_{5}CN \xrightarrow{H_{2}/Ni} C$$
(1991, 2M)

- **48.** Arrange the following as stated: "Increasing order of acidic strength." ClCH₂COOH, CH₃CH₂COOH, ClCH₂CH₂COOH, (CH₃)₂CHCOOH, CH₃COOH (1991, 1M)
- 49. How will you bring about the following conversion?"Ethanoic acid to a mixture of methanoic acid and diphenyl ketone." (1990, 2M)
- **50.** Give reasons for : "Carbon-oxygen bond lengths in formic acid are 1.23 Å

and 1.36 Å and both the carbon-oxygen bonds in sodium formate have the same value, i.e. 1.27Å." (1988, 2M)

- 51. Write balanced equations for the following reaction : "Acetamide is reacted with bromine in the presence of potassium hydroxide." (1987, 1M)
- **52.** A liquid *X*, having a molecular formula $C_6H_{12}O_2$ is hydrolysed with water in the presence of an acid to give a carboxylic acid *Y* and an alcohol *Z*. Oxidation of *Z* with chromic acid gives *Y*. What are the structures of *X*, *Y* and *Z*? (1986, 3M)
- **53.** An ester A (C₄H₈O₂) on treatment with excess of methyl magnesium chloride followed by acidification, gives an alcohol *B* as the sole organic product. Alcohol *B*, on oxidation with NaOCl followed by acidification, gives acetic acid. Deduce structures of *A* and *B*. Show the reactions involved. (1998)
- 54. Complete the following with appropriate structures :

$$(CH_3CO)_2O \xrightarrow{C_2H_5OH} CH_3COOH + ?$$
 (1986.1M)

55. Arrange the following in order of their increasing ease of hydrolysis: (1986, 1M)

CH₃COOC₂H₅, CH₃COCl, (CH₃CO)₂O, CH₃CONH₂

- **56.** Give reasons in one or two sentences for the following : "Formic acid is a stronger acid than acetic acid." (1985, 1M)
- **57.** Write down the reactions involved in the preparation of the following using the reagents indicated against in parenthesis. "Propionic anhydride from propionaldehyde"

58. Give reasons for the following in one or two sentences.

[AgNO₃, NH₄OH,

"Acetic acid can be halogenated in the presence of P and Cl_2 , but formic acid cannot be halogenated in the same way." Why? (1983, 1M)

- **59.** State with balanced equation, what happens when, "Acetic anhydride reacts with phenol in presence of a base." (1982, 1M)
- 60. Write the structural formula of main organic product formed when ethyl acetate is treated with double the molar quantity of methyl magnesium bromide and the reaction mixture is poured into water. (1981, 1/2 M)
- Write the chemical equation to show what happens when, "Ethyl acetate is treated with sodium ethoxide in ethanol and the reaction mixture is acidified". (1981, 2 M)

Answers

Topic 1			
1. (b)	2. (c)	3. (d)	4. (d)
5. (b)	6. (d)	7. (c)	8. (d)
9. (d)	10. (c)	11. (d)	12. (a)
13. (d)			
Topic 2			
1. (d)	2. (d)	3. (a)	4. (b)

5.	(b)	6. (c)	7. (a)	8. (a)
9.	(b)	10. (c)	11. (b)	12. (a)
13.	(c)	14. (b)	15. (b)	16. (a,c,d)
17.	(b,d)	18. (a,c)	19. (d)	20. (c)
21.	(a)	22. (c)	23. (b)	24. (a)
25.	(d)	26. (d)	27. (b)	
28.	H_2O and CO	gas	29. False	30. False
31.	(2)			

Hints & Solutions

Topic 1 Carboxylic Acids

1. Heating of $(CH_2)_4 < COOH COOH$ (adipic acid) with a dehydrating agent,

decarboxylates (—CO $_2$) to give a ketone (cyclopentanone), not an anhydride.

$$\begin{array}{c} \hline COOH & \underline{A} \\ \hline COOH & \underline{-CO_2} \\ -H_2O \end{array} \end{array} \xrightarrow{} 0$$

Codes

 $P \rightarrow 1$, $Q \rightarrow 3$, $R \rightarrow 4$, $S \rightarrow 2$ Thus, (a) is the correct choice.

- **2.** This problem is based on successive reduction, chlorination and elimination reaction. To solve such problem, use the function of the given reagents.
 - (i) LiAlH₄ causes reduction
 - (ii) PCl₅ causes chlorination
 - (iii) Alc. KOH causes elimination reaction

$$\begin{array}{c} \text{CH}_{3}\text{COOH} \xrightarrow{\text{LIAIH}_{4}} & \text{CH}_{3}\text{CH}_{2}\text{OH} \\ \xrightarrow{(A)} & \xrightarrow{(A)} & \text{CH}_{3}\text{CH}_{2}\text{CI} \xrightarrow{\text{Alc.KOH}} & \text{CH}_{2} = \text{CH}_{2} \\ \xrightarrow{(B)} & \xrightarrow{(B)} & \text{CH}_{2}\text{CI} \xrightarrow{(C)} & \text{Ethylene} \end{array}$$

3. PLAN NaHCO₃ \implies Na⁺ + HCO₃⁻

 HCO_3^- is decomposed by acid releasing CO_2

$$HCO_3^- + H^+ \longrightarrow H_2O + CO$$

0

If acid is stronger than HCO_3^- then CO_2 is released. Phenol is less acidic and thus does not liberate CO_2^- with NaHCO₃.

4.
$$CH_{3}CH_{2} \xrightarrow{O}_{(A)} C \longrightarrow OH \xrightarrow{NH_{3}} OH_{3}CH_{2}COONH_{4} \xrightarrow{\Delta} CH_{3} \xrightarrow{O}_{(C)} CH_{2} \xrightarrow{O}_{(C)} OH_{2} \xrightarrow{H_{2}} OH_{2} \xrightarrow{O}_{(C)} OH_{2} \xrightarrow{H_{2}} OH_{2} OH_{2} \xrightarrow{H_{2}} OH_{2} \xrightarrow{H_{2}} OH_{2} OH_{2} \xrightarrow{H_{2}} OH_{2} OH_{2} \xrightarrow{H_{2}} OH_{2} OH_{2} OH_{2} \xrightarrow{H_{2}} OH_{2} OH_{2}$$

 It is a β-keto acid which undergo decarboxylation in very mild condtion, i.e. on simple heating. This occur through a six member cyclic transition state as

NOTE

- Ordinary carboxylic acid require soda-lime catalyst for decarboxylation.
- Final step of decarboxylation in the above shown mechanism involve tautomerism, therefore, for decarboxylation of β -keto acid by above mechanism, the acid must contain an α -H].
- 6. Structures of the various compounds are

Reaction occur at planar sp^2 carbon giving racemic mixture of product.

- **10.** $C_6H_5COOH + SOCl_2 \longrightarrow C_6H_5-COCl$
- **11.** CH_3 — CH_2 — $COOH + NaHCO_3$ \longrightarrow CH_3CH_2COONa + $H_3O + CO_2$

12. Ethanol is the weakest acid among these, hence it is most basic.

The correct match is 1 i.e., I₂, NaOH and 5 i.e., NaOBr The reactions proceed as

The correct match is 2 i.e. $[Ag(NH_3)_2]OH$ and 3 i.e., Fehling's solution.

The reactions proceed as

The correct match is 1, 5 again.

The reaction proceed as

Topic 2 Acid Derivatives

1. Given reaction involves acidic hydrolysis of esters followed by the intramolecular cyclisation. The chemical equation is as follows:

2. The major product of the given reaction is (d). This reaction proceed *via* Friedel-Craft acylation. Here, — Cl group present on chlorobenzene is *ortho* and *para*-directing. It can be easily understood by resonating structures of chlorobenzene.

The given reaction proceed as follows :

- **3.** All the given compounds are acid derivatives, thus contain carbonyl group in them. LiAlH₄ reduces these compounds through nucleophilic substitution *via* addition elimination $(S_{N_4} E)$ reaction. The rate of reaction depends upon the following factors :
 - (i) Size of alkyl group.
 - (ii) Steric hinderance around the >C ==O group.
 - (iii) (+) ve charge on the C-atom of >C==O group.

The alkyl groups are more or less same in the given compounds. Thus, the reactivity order of given compounds depends upon 2nd and 3rd factor written above. The cumulative effect of these two factors results to leaving group ability (LGA) of the substituents in the following order :

$$\begin{array}{c} Cl^{-} \\ Good \ leaving \\ group \end{array} > O^{-} \underbrace{ C}_{C} CH_{3} > O^{-} CH_{3} > NH_{2} \\ Poor \ leaving \\ group \\ group \end{array}$$

This leaving group ability (weak conjugate base) corresponds directly to the reactivity order. Hence, the correct reactivity order is:

Note The -I effect of — Cl and + *m* effects of

$$\overset{O}{\parallel} \\ \overset{H}{\longrightarrow} \overset{O}{\longrightarrow} \overset{O}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{C}{\longrightarrow} \overset{O}{\longrightarrow} \overset$$

group leaving ability.

4. In presence of strong base, acidic H can easily be removed that result in formation of anion. The resulting anion undergoes intramolecular nucleophilic addition which on hydrolysis followed by heating gives the required product.

5. Alkaline hydrolysis of an ester (carboxylic acid derivative) follows acyl $S_N 2$ mechanism.

Rate of S_N^2 mechanism depends on the polarity of >C=0 group of -COOR group. Electron withdrawing group (-R > -I) increases the rate of S_N^2 reaction whereas electron donating group (+R > +I) decreases the rate of S_N^2 reaction. Here, the nature of functional groups attached *para* to the benzene ring are:

$$-\!\!\!\underset{(-R)}{\operatorname{NO}_2} \! > \!\!-\!\!\underset{(-I)}{\operatorname{Cl}} \! > \!\!-\!\!\underset{(+R)}{\operatorname{OCH}_3}$$

So, the order of hydrolysis will be,

$$\underset{(-R)}{\coprod} > \underset{(-I)}{\coprod} > I > \underset{(+R)}{\coprod}$$

6. The mechanism of the given reaction is as follows:

Thus, both benzyl cyanide and benzyl isocyanide are the products of reaction but benzyl isocyanide being the major product gives the correct option as (c).

7. Key Idea DIBAL-H is diisobutyl aluminium hydride, $[(CH_3)_2CHCH_2]_2AlH$. It is a selective reducing agent. It reduces carboxylic acids, carboxylic acid derivatives and nitriles into aldehydes. It is an electrophilic reducing agent.

The mechanism of the reaction is as follows:

8. PLAN his problem can be solved by usin the stability of radical obtained after fra mentation of peroxyester.

Allylic radical are more stable than alkyl radical, so when there is a possibility of formation of allyl radical, it will undergo fragmentation through formation of allyl radical. i.e. fragmentation produces stable radical. On the basis of stability of radical, fragmentation can be done as

Column 1	I	Column II	Explanation
Р.	1.	C ₆ H ₅ H ₂ C O CH ₃	C_6H_5 — CH_2 + CO_2 + CH_3O •
Q.	3.	$C_6H_5H_2C$ O CH_3 CH_3 $CH_2C_6H_5$	$C_6H_5 - CH_2 + CO_2 + Ph - CH_2 - CH_3 \longrightarrow Ph - CH_2 + CH_3 - CO - CH_3$
R.	4.	C_6H_5 O O CH_3	$C_{6}H_{5}-CO_{2}+CH_{3}-C-CH_{3}\xrightarrow{-CO_{2}}Ph^{\bullet}+CH_{3}-CO-Ph+CH_{3}^{\bullet}+CO_{2}$
S.	2.		$ \begin{array}{c} C_{6}H_{5} \longrightarrow C_{6}H_{5}^{\bullet} + CO_{2} \end{array} $

9.
$$R$$
—NH₂+CH₃—C—Cl $\xrightarrow[(-HCl)]{}$ R —NH—C—CH₃

Since, each $-COCH_3$ group displace one H atom in the O || reaction of one mole of CH_3 -C -Cl with one $-NH_2$ group,

the molecular mass increases with 42 unit.

Since the mass increases by (390 - 180) = 210, hence the number of $--NH_2$ group is $\frac{210}{42} = 5$.

11.
$$C_6H_5 \longrightarrow C \longrightarrow NH_2 \xrightarrow{POCl_3} C_6H_5 \longrightarrow CN$$

12. $CH_3 \longrightarrow C \longrightarrow C_2H_5 \xrightarrow{CH_3MgBr}_{excess} CH_3 \longrightarrow CH_3$

$$\xrightarrow{H_2O} CH_3 \xrightarrow{CH_3} OH_{CH_3}$$

13.
$$P \xrightarrow{H^+}_{H_2O} CH_3 \xrightarrow{OH}_{C} CH_2 \xrightarrow{O}_{H_3} CH_3 \xrightarrow{H_3}_{Vellow}$$

$$Q \xrightarrow{H^{+}} CH_{3} \longrightarrow CH = CH \longrightarrow OH \Longrightarrow CH_{3}CH_{2}OH$$

$$\xrightarrow{\text{Fehling solution}} Cu_{2}O\downarrow$$
Red
$$(CHO)$$

15. $CH_3 \longrightarrow CH_3 NH_2 + Br_2 + NaOH \longrightarrow CH_3 NH_2$ "Hofmann's bromamide reaction".

16. (a) T undergoes an ester hydrolysis in hot aqueous alkali as

$$\begin{array}{c} O \\ H_{3}C & \xrightarrow{\text{NaOH}(aq)} \\ H_{3}C & \xrightarrow{\text{NaOH}(aq)} \\ T & \xrightarrow{\text{NaOH}(aq)} \\ HO & \xrightarrow{\text{CH}_{3}[]} \\ HO &$$

- (b) LiAlH₄ reduces ester to alcohol as
 "U" No chiral carbon optically inactive.
- (c) U on treatment with excess of acetic anhydride forms a diester as
- (d) U on treatment with CrO₃|H⁺ undergo oxidation to diacid which gives effervescence with NaHCO₃.

$$U + CrO_3 \xrightarrow{H^+} H_3C \xrightarrow{V} OH \xrightarrow{NaHCO_3} CO_2 \uparrow$$

- **17.** For separation by differential extraction one of the component must form salt with the given base so that the salt will be extracted in aqueous layer leaving other component in organic layer.
 - (a) Both phenol and benzoic acid forms salt with NaOH, hence this mixture can't be separated.
 - (b) Benzoic acid forms salt with NaOH while benzyl alcohol does not, hence the mixture can be separated using NaOH. Also benzoic acid forms salt with NaHCO₃ but benzyl alcohol does not, hence NaHCO₃ can be used for separation.
 - (c) Neither benzyl alcohol nor phenol forms salt with NaHCO₃, mixture cannot be separated using NaHCO₃.
 - (d) C₆H₅CH₂COOH forms salt with NaOH, C₆H₅CH₂OH does not, hence mixture can be separated using NaOH. C₆H₅CH₂COOH forms salt with NaHCO₃. C₆H₅CH₂OH does not, hence mixture can be separated using NaHCO₃.

18.
$$R - C - NH_2 + OH^- + Br_2 \longrightarrow R - C - \frac{\|}{(A)} NHBr$$

 $Q = 0 - \frac{\|}{(A)} NHBr$
 $R - C - NHBr + OH^- \longrightarrow R - C - \frac{\|}{(B)} - Br$
 $\longrightarrow R - N = C = O + Br^-$

19. *p*-hydroxy benzoic acid has higher boiling point than *o*-hydroxy benzoic acid because former prefers intermolecular H-bonding while the latter prefer intramolecular H-bonding.

0

20. Compounds with CH_3 —C— or CH_3 —CH(OH)-group gives haloform reaction but this reaction is given only by aldehydes, ketones and alcohols, so acetic acid does not give haloform reaction. However acetic acid has three α -H, therefore, statement I is true but statement II is false.

22. (a)

- **22.** (c)
- **23.** PLAN lkenes decolourise Br_2 water

-isomer $\xrightarrow{\text{dil}\cdot\text{KMnO}_4}$ isomers by addition -isomer $\xrightarrow{\text{dil}\cdot\text{KMnO}_4} d(+)$ and l(-) isomers by

Formation of anhydride from dicarboxylic acid indicates -isomer.

P and Q are isomers of dicarboxylic acids.

$$P, Q \xrightarrow{\text{Br}_2 \text{ water}} \text{decolourised}$$

P and Q have (C=C) bond

 $P \xrightarrow{\Delta}$ anhydride

Thus, *P* is *cis*-isomer.

T and U (in 1 : 1 molar ratio) form optically inactive (racemic mixture) due to external compensation.

24. PLAN Ni / H_2 reduces (C = C) bond.

Benzene undergoes Friedel-Crafts reaction Zn-Hg/HCl reduces carbonyl group (Clemmensen reduction)

an intermediate (ii)

26. Rearrangement of (iii) to (iv) is the rate determining step :

27. The rate determining step of Hofmann's bromamide reaction is unimolecular rearrangement of bromamide anion (iii) and no cross-products are formed when mixture of amides are taken.

- **28.** HCOOH + $H_2SO_4 \xrightarrow{\Delta} H_2O + CO \uparrow$ conc.
- **29.** Propanoic acid has higher boiling point than *n*-butanol because of more exhaustive H-bonding in former case.
- **30.** Saponification is hydrolysis of ester in presence of dilute base rather in presence of dilute acid.
- **31. PLAN** eactant is cyclic anhydride and chan es to dicarboxylic acid on hydrolysis.

Also there is decarboxylation on heating if there is keto group w.r.t — COOH group. Ozonolysis cleaves (C=C) bond and H_2O_2 oxidises — CHO to — COOH group.

(D)

33. Compound *A* of molecular formula $C_9H_7O_2Cl$ exist in keto and predominantly in enolic form *B*. Hence, *A* must be a carbonyl compound which contain α -H. Enolic forms of *B* predominates because of presence of intramolecular H-bonding.

34. The two stereoisomers of 2-phenyl propanoic acid in the racemic mixture are :

41. *B* is
$$C_3H_5COOH$$
 and *A* is $C_3H_5-C \equiv C-C_3H_5$

4

Also *A* on ozonolysis gives *B* indicates that there is no olefinic bond in C_3H_5 -unit of *A* and it is cyclopropyl group.

$$\Rightarrow A = \bigcirc -C = C - \bigcirc C$$

$$B = \bigcirc -COOH$$
and $C = \bigcirc -Br$

42.
$$CH_3CH_2COOH \xrightarrow{\text{red-P}} CH_3 \xrightarrow{\text{CH}} CH \xrightarrow{\text{COOH}} A \xrightarrow{\text{Br}} (HVZ \text{ reaction})$$

$$\xrightarrow{\text{(i) alc.KOH}} \text{CH}_2 = \xrightarrow{\text{CH}} \text{COOH}$$

43. A β -keto acid undergo very fast decarboxylation

48. Electron withdrawing inductive effect increases acid strength while electron donating inductive effect decreases acid strength.
 + *I*-effect

$$H_{3}C$$
 — CH — COOH < CH₃CH₂COOH < CH₃COOH
CH₃ + *I*-effect + *I*-effect
+ *I*-effect CH₂—CH₂COOH < CH₂—COOH
CI $-I$ -effect (greater distance) Q

50. Both formic acid and sodium formate exhibit the phenomenon of resonance as :

$$H = C = O^{-} H \leftrightarrow H = C = O^{-} H$$
$$H = C = O^{-} H$$
$$H = C = O^{-} H$$
$$H = C = O^{-} H$$

In formic acid, the extent of delocalisation is less compared to sodium formate because of charge separation in the former case. Due to this reason, the bond length between carbon and sp^3 oxygen in formic acid is slightly greater than the same between carbon and sp^2 oxygen. In formate ion, there is no separation of charge and both the resonance structures are equivalent giving equal bond length of both carbon oxygen bonds.

- **51.** $CH_3CONH_2 + Br_2 \xrightarrow{NaOH} CH_3NH_2 + Na_2CO_3$ Hoffman bromamide reaction
- **52.** *X* is an ester and both its acid and alcohol fragments have same number of carbons. Hence, X is :

54.
$$(CH_3CO)_2O \xrightarrow{C_2H_5OH} CH_3COOH + CH_3 - C - OC_2H_5$$

55. Among acid derivatives, the reactivity towards nucleophilic acyl substitution is in the order of :

Amide < Ester < Anhydride < Acid chloride

Hydrolysis is an example of nucleophilic acyl substitution, hence the reactivity towards hydrolysis is :

 $\rm CH_3CONH_2 < \rm CH_3COOC_2H_5 < (\rm CH_3CO)_2O < \rm CH_3COCl$

56.
$$\begin{array}{c} O \\ \parallel \\ -H_3 - C - OH \\ +I \text{ -effect} \\ \text{decreases acid-strength} \end{array}$$
 $\begin{array}{c} O \\ \parallel \\ H - C - OH \\ \text{does not affect acidity.} \end{array}$

57.
$$CH_3CH_2CHO + AgNO_3 \xrightarrow{NH_4OH} CH_3CH_2COOH$$

 $\xrightarrow{P_2O_5} (CH_3CH_2CO)_2O$

58. CH_3 —COOH + $Cl_2 \xrightarrow{\text{Red-P}} CH_2$ —COOH (HVZ reaction) |Cl

For this reaction to occur, presence of a α -H is essential requirement. Formic acid does not has any α -H, fails in HVZ reaction.

61.
$$CH_3COOC_2H_5 \xrightarrow{C_2H_5O^-} \overline{C}H_2COOC_2H_5$$

$$\begin{array}{c} \overset{O}{\longrightarrow} & \overset{O}{\longrightarrow} \\ \overset{H_{3}}{\longrightarrow} & & \overset{H_{3}}{\longrightarrow} \\ \overset{H_{3}}{\longrightarrow} \\ \overset{H_{3}}{\longrightarrow} \\ \overset{H_{3}}{\longrightarrow} & \overset{H_{3}}{\longrightarrow} \\ \overset{H_{3}}{\longrightarrow}$$