# **13**

## Area

### **Topic 1 Area Based on Geometrical Figures** Without Using Integration

#### **Objective Questions I** (Only one correct option)

- **1.** If the area enclosed between the curves  $y = kx^2$  and  $x = ky^2$ , (k > 0), is 1 square unit. Then, k is

- (a)  $\sqrt{3}$  (b)  $\frac{1}{\sqrt{3}}$  (c)  $\frac{2}{\sqrt{3}}$  (d)  $\frac{\sqrt{3}}{2}$
- **2.** The area (in sq units) of the region  $\{(x, y): y^2 \ge 2x\}$ and  $x^2 + y^2 \le 4x$ ,  $x \ge 0$ ,  $y \ge 0$ } is (a)  $\pi - \frac{4}{3}$  (b)  $\pi - \frac{8}{3}$  (c)  $\pi - \frac{4\sqrt{2}}{3}$  (d)  $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$

- **3.** The common tangents to the circle  $x^2 + y^2 = 2$  and the parabola  $y^2 = 8x$  touch the circle at the points P,Q and the parabola at the points R, S. Then, the area (in sq units) of the quadrilateral PQRS is
  - (a) 3
- (b) 6
- (c) 9
- (2014 Adv.) (d)15
- **4.** The area of the equilateral triangle, in which three coins of radius 1 cm are placed, as shown in the figure, is



(2005, 1M)

- (a)  $(6 + 4\sqrt{3})$  sq cm
- (b)  $(4\sqrt{3} 6)$  sq cm
- (c)  $(7 + 4\sqrt{3})$  sq cm (d)  $4\sqrt{3}$  sq cm
- 5. The area of the quadrilateral formed by the tangents at the end points of latusrectum to the ellipse  $\frac{x^2}{9} + \frac{y^2}{5} = 1$ , is (2003, 1M)
  - (a) 27/4 sq units
- (b) 9 sq units
- (c) 27/2 sq units
- (d) 27 sq units
- 6. The area (in sq units) bounded by the curves y = |x| - 1 and y = -|x| + 1 is (2002, 2M)
  - (a) 1
- (b) 2
- (c)  $2\sqrt{2}$
- (d) 4

- 7. The triangle formed by the tangent to the curve  $f(x) = x^2 + bx - b$  at the point (1,1) and the coordinate axes, lies in the first quadrant. If its area is 2 sq units, then the value of b is
  - (a) 1(b) 3
- (c) 3
- (d) 1

#### **Objective Questions II**

(One or more than one correct option)

- **8.** Let *P* and *Q* be distinct points on the parabola  $y^2 = 2x$  such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of  $\triangle OPQ$  is  $3\sqrt{2}$ , then which of the following is/are the coordinates of P? (2015 Adv.)
  - (a)  $(4, 2\sqrt{2})$  (b)  $(9, 3\sqrt{2})$  (c)  $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$  (d)  $(1, \sqrt{2})$

#### **Numerical Value**

**9.** A farmer  $F_1$  has a land in the shape of a triangle with vertices at P(0,0), Q(1,1) and R(2,0). From this land, a neighbouring farmer  $F_2$  takes away the region which lies between the sides PQ and a curve of the form  $y = x^n \ (n > 1)$ . If the area of the region taken away by the farmer  $F_2$  is exactly 30% of the area of  $\Delta PQR$ , then the value of n is ......

#### Fill in the Blanks

- **10.** The area of the triangle formed by the positive *X*-axis and the normal and the tangent to the circle  $x^2 + y^2 = 4$  at  $(1, \sqrt{3})$
- **11.** The area enclosed within the curve |x| + |y| = 1 is ...... (1981, 2M)

#### **Analytical & Descriptive Question**

**12.** Let O(0,0), A(2,0) and  $B(1,\frac{1}{\sqrt{3}})$  be the vertices of a triangle. Let R be the region consisting of all those points P $\triangle OAB$  which satisfy  $d(P, OA) \ge \min$ 

 $\{d(P, OB), d(P, AB)\}\$ , where d denotes the distance from the point to the corresponding line. Sketch the region R and find its area. (1997C, 5M)

#### Passage Based Questions

Consider the functions defined implicity by the equation  $y^3 - 3y + x = 0$  on various intervals in the real line. If  $x \in (-\infty, -2) \cup (2, \infty)$ , the equation implicitly defines a unique real-valued differentiable function y = f(x). If  $x \in (-2, 2)$ , the equation implicitly defines a unique real-valued differentiable function y = g(x), satisfying g(0) = 0.

- **13.** If  $f(-10\sqrt{2}) = 2\sqrt{2}$ , then  $f''(-10\sqrt{2})$  is equal to

- (a)  $\frac{4\sqrt{2}}{7^3 \, 3^2}$  (b)  $-\frac{4\sqrt{2}}{7^3 \, 3^2}$  (c)  $\frac{4\sqrt{2}}{7^3 \, 3}$  (d)  $-\frac{4\sqrt{2}}{7^3 \, 3}$

## **Topic 2 Area Using Integration**

#### **Objective Questions I** (Only one correct option)

1. If the area (in sq units) bounded by the parabola  $y^2 = 4\lambda x$  and the line  $y = \lambda x$ ,  $\lambda > 0$ , is  $\frac{1}{0}$ , then  $\lambda$  is equal to

(2019 Main, 12 April II)

- (a)  $2\sqrt{6}$ (c) 24 (d)  $4\sqrt{3}$
- **2.** If the area (in sq units) of the region  $\{(x, y): y^2 \le 4x, x + y \le 1, x \ge 0, y \ge 0\}$  is  $a\sqrt{2} + b$ , then a - b is equal to (c)  $\frac{8}{2}$ (2019 Main, 12 April I) (a)  $\frac{10}{3}$  (b) 6
- 3. The area (in sq units) of the region bounded by the curves  $y = 2^x$  and y = |x + 1|, in the first quadrant is
- (a)  $\frac{3}{2}$  (b)  $\log_e 2 + \frac{3}{2}$  (c)  $\frac{1}{2}$  (d)  $\frac{3}{2} \frac{1}{\log_e 2}$
- 4. The area (in sq units) of the region

The area (in sq units) of the 
$$A = \left\{ (x, y) : \frac{y^2}{2} \le x \le y + 4 \right\} \text{ is}$$

(2019 Main, 9 April II)

- (a) 30 (b)  $\frac{53}{3}$  (c) 16
- (d) 18
- **5.** The area (in sq units) of the region  $A = \{(x, y) : x^2 \le y \le x + 2\}$  is (2019 Main, 9 April I) (a)  $\frac{13}{6}$  (b)  $\frac{9}{2}$  (c)  $\frac{31}{6}$  (d)  $\frac{10}{3}$
- **6.** Let  $S(\alpha) = \{(x, y) : y^2 \le x, 0 \le x \le \alpha\}$  and  $A(\alpha)$  is area of the region  $S(\alpha)$ . If for  $\lambda$ ,  $0 < \lambda < 4$ ,  $A(\lambda) : A(4) = 2 : 5$ , then  $\lambda$ 
  - equals (2019 Main, 8 April II)
    (a)  $2\left(\frac{4}{25}\right)^{\frac{1}{3}}$  (b)  $4\left(\frac{2}{5}\right)^{\frac{1}{3}}$  (c)  $4\left(\frac{4}{25}\right)^{\frac{1}{3}}$  (d)  $2\left(\frac{2}{5}\right)^{\frac{1}{3}}$
- **7.** The tangent to the parabola  $y^2 = 4x$  at the point where it intersects the circle  $x^2 + y^2 = 5$  in the first quadrant,
  - passes through the point
    (a)  $\left(\frac{1}{4}, \frac{3}{4}\right)$  (b)  $\left(\frac{3}{4}, \frac{7}{4}\right)$  (c)  $\left(-\frac{1}{3}, \frac{4}{3}\right)$  (d)  $\left(-\frac{1}{4}, \frac{1}{2}\right)$

**14.** The area of the region bounded by the curve y = f(x), the X-axis and the lines x = a and x = b, where  $-\infty < a < b < -2$ , is

(a)  $\int_a^b \frac{x}{3[\{f(x)\}^2 - 1]} dx + bf(b) - af(a)$ 

- (b)  $-\int_a^b \frac{x}{3[\{f(x)\}^2 1]} dx + bf(b) af(a)$
- (c)  $\int_a^b \frac{x}{3[\{f(x)\}^2 1]} dx bf(b) + af(a)$
- (d)  $-\int_a^b \frac{x}{3[\{f(x)\}^2 1]} dx bf(b) + af(a)$
- **15.**  $\int_{-1}^{1} g'(x) dx$  is equal to
  - (a) 2g(-1) (b) 0
- (c) 2g(1)
- (d) 2g(1)
- 8. The area (in sq units) of the region  $A = \{(x, y) \in R \times R \mid 0 \le x \le 3,$

 $0 \le y \le 4, y \le x^2 + 3x$ } is

(2019 Main, 8 April I)

- (a)  $\frac{53}{6}$  (b) 8
- (d)  $\frac{26}{}$
- 9. The area (in sq units) of the region bounded by the parabola,  $y = x^2 + 2$  and the lines, y = x + 1, x = 0 and (2019 Main, 12 Jan I) (a)  $\frac{15}{2}$  (b)  $\frac{17}{4}$  (c)  $\frac{21}{2}$

- **10.** The area (in sq units) in the first quadrant bounded by the parabola,  $y = x^2 + 1$ , the tangent to it at the point (2, 5) and the coordinate axes is (2019 Main, 11 Jan II)

  - (a)  $\frac{14}{3}$  (b)  $\frac{187}{24}$
- (c)  $\frac{8}{3}$
- **11.** The area (in sq units) of the region bounded by the curve (a)  $\frac{7}{8}$  (b)  $\frac{9}{8}$  (c)  $\frac{5}{4}$  (d)  $\frac{3}{4}$

- **12.** The area of the region  $A = \{(x, y); 0 \le y \le x \mid x \mid + 1 \text{ and } \}$  $-1 \le x \le 1$ } in sq. units, is (2019 Main, 9 Jan II)
- (b)  $\frac{4}{3}$
- (c)  $\frac{1}{3}$
- 13. The area (in sq units) bounded by the parabola  $y = x^2 - 1$ , the tangent at the point (2, 3) to it and the Y-axis is (2019 Main, 9 Jan I) (a)  $\frac{8}{3}$  (b)  $\frac{56}{3}$  (c)  $\frac{32}{3}$  (d)  $\frac{14}{3}$

- **14.** Let  $g(x) = \cos x^2$ ,  $f(x) = \sqrt{x}$  and  $\alpha$ ,  $\beta$  ( $\alpha < \beta$ ) be the roots of the quadratic equation  $18x^2 - 9\pi x + \pi^2 = 0$ . Then, the area (in sq units) bounded by the curve  $y = (g \circ f)(x)$  and the lines  $x = \alpha$ ,  $x = \beta$  and y = 0, is
- (a)  $\frac{1}{2}(\sqrt{3}-1)$  (b)  $\frac{1}{2}(\sqrt{3}+1)$  (c)  $\frac{1}{2}(\sqrt{3}-\sqrt{2})$  (d)  $\frac{1}{2}(\sqrt{2}-1)$

- **15.** The area (in sq units) of the region  $\{(x, y): x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x}\}\$ is
  - (a)  $\frac{59}{12}$  (b)  $\frac{3}{2}$  (c)  $\frac{7}{3}$  (d)  $\frac{5}{2}$
- (2017 Main)
- **16.** Area of the region  $\{(x, y)\} \in R^2 : y \ge \sqrt{|x + 3|}$ ,  $5y \le (x+9) \le 15$ } is equal to (a)  $\frac{1}{6}$  (b)  $\frac{4}{3}$  (c)  $\frac{3}{2}$
- **17.** The area (in sq units) of region described by (x, y)  $y^2 \le 2x$ and  $y \ge 4x - 1$  is (2015) (a)  $\frac{7}{32}$  (b)  $\frac{5}{64}$  (c)  $\frac{15}{64}$  (d)  $\frac{9}{32}$

- **18.** The area (in sq units) of the region described by
  - $A = \{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 x\} \text{ is}$  (2014 Main) (a)  $\frac{\pi}{2} + \frac{4}{3}$  (b)  $\frac{\pi}{2} \frac{4}{3}$  (c)  $\frac{\pi}{2} \frac{2}{3}$  (d)  $\frac{\pi}{2} + \frac{2}{3}$
- **19.** The area enclosed by the curves  $y = \sin x + \cos x$  and  $y = |\cos x - \sin x|$  over the interval  $\left|0, \frac{\pi}{2}\right|$  is
  - (a)  $4(\sqrt{2}-1)$
- (b)  $2\sqrt{2}(\sqrt{2} 1)$ (d)  $2\sqrt{2}(\sqrt{2} + 1)$
- (c)  $2(\sqrt{2}+1)$
- **20.** The area (in sq units) bounded by the curves  $y = \sqrt{x}$ , 2y - x + 3 = 0, X-axis and lying in the first quadrant, is (2013 Main, 03)
- (a) 9 (b) 6 (c) 18
- **21.** Let  $f: [-1,2] \to [0,\infty)$  be a continuous function such that  $f(x) = f(1-x), \forall x \in [-1, 2].$  If  $R_1 = \int_{-1}^{2} x f(x) dx$  and  $R_2$  are the area of the region bounded by y = f(x), x = -1, x = 2and the *X*-axis. Then,
  - (a)  $R_1 = 2R_2$
- (c)  $2R_1 = R_2$
- (b)  $R_1 = 3R_2$ (d)  $3R_1 = R_2$
- **22.** If the straight line x = b divide the area enclosed by  $y = (1 - x)^2$ , y = 0 and x = 0 into two parts  $R_1 (0 \le x \le b)$ and  $R_2(b \le x \le 1)$  such that  $R_1 - R_2 = \frac{1}{4}$ . Then, b equals

- (a)  $\frac{3}{4}$  (b)  $\frac{1}{2}$  (c)  $\frac{1}{3}$  (d)  $\frac{1}{4}$  (2011)
- **23.** The area of the region between the curves  $y = \sqrt{\frac{1 + \sin x}{\cos x}}$  and  $y = \sqrt{\frac{1 \sin x}{\cos x}}$  and bounded by the

- (a)  $\int_0^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$  (b)  $\int_0^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$
- (c)  $\int_0^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$  (d)  $\int_0^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$
- **24.** The area bounded by the curves  $y = (x-1)^2$ ,  $y = (x+1)^2$ and  $y = \frac{1}{4}$  is
  - (a)  $\frac{1}{3}$  sq unit (b)  $\frac{2}{3}$  sq unit (c)  $\frac{1}{4}$  sq unit (d)  $\frac{1}{5}$  sq unit

**25.** The area enclosed between the curves  $y = \alpha x^2$  and  $x = \alpha y^2$  ( $\alpha > 0$ ) is 1 sq unit. Then, the value of  $\alpha$  is

(2004, 1M)

- (a)  $\frac{1}{\sqrt{a}}$  (b)  $\frac{1}{a}$  (c) 1

- **26.** The area bounded by the curves y = f(x), the *X*-axis and the ordinates x = 1 and x = b is  $(b - 1) \sin (3b + 4)$ . Then, f(x) is equal to (1982, 2M)
  - (a)  $(x-1)\cos(3x+4)$
  - (b)  $8\sin (3x + 4)$
  - (c)  $\sin (3x + 4) + 3(x 1) \cos (3x + 4)$
  - (d) None of the above
- **27.** The slope of tanget to a curve y = f(x) at [x, f(x)] is 2x + 1. If the curve passes through the point (1, 2), then the area bounded by the curve, the X-axis and the line x = 1
  - (a)  $\frac{3}{2}$
- (b)  $\frac{4}{3}$  (c)  $\frac{5}{6}$  (d)  $\frac{1}{12}$

#### **Objective Questions II**

(One or more than one correct option)

- **28.** If the line  $x = \alpha$  divides the area of region  $R = \{(x, y) \in \mathbb{R}^2 : x^3 \le y \le x, 0 \le x \le 1\}$  into two equal parts, then
  (a)  $2\alpha^4 - 4\alpha^2 + 1 = 0$ (b)  $\alpha^4 + 4\alpha^2 - 1 = 0$ (c)  $\frac{1}{2} < \alpha < 1$ (d)  $0 < \alpha \le \frac{1}{2}$

- 29. If S be the area of the region enclosed by  $y = e^{-x^2}$ , y = 0, x = 0 and x = 1. Then,

- (a)  $S \ge \frac{1}{e}$  (b)  $S \ge 1 \frac{1}{e}$  (c)  $S \le \frac{1}{4} \left( 1 + \frac{1}{\sqrt{e}} \right)$  (d)  $S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left( 1 \frac{1}{\sqrt{2}} \right)$
- **30.** Area of the region bounded by the curve  $y = e^x$  and lines x = 0 and y = e is
  - (a) e-1
- (b)  $\int_{1}^{e} \ln(e+1-y) \, dy$
- (c)  $e \int_{0}^{1} e^{x} dx$
- (d)  $\int_{1}^{e} \ln y \, dy$
- **31.** For which of the following values of m, is the area of the region bounded by the curve  $y = x - x^2$  and the line y = mx equals  $\frac{9}{2}$ ? (1999, 3M)
- (b) -2
- (c) 2
- (d) 4

#### **Analytical & Descriptive Questions**

- **32.** If  $\begin{bmatrix} 4a^2 & 4a & 1 \\ 4b^2 & 4b & 1 \\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix},$ 
  - f(x) is a quadratic function and its maximum value occurs at a point V. A is a point of intersection of y = f(x)with X-axis and point B is such that chord AB subtends a right angle at V. Find the area enclosed by f(x) and chord AB.

- **33.** Find the area bounded by the curves  $x^2 = y$ ,  $x^2 = -y$  and  $y^2 = 4x 3$ . (2005, 4)
- **34.** A curve passes through (2,0) and the slope of tangent at point P(x, y) equals  $\frac{(x+1)^2 + y 3}{(x+1)}$ .

Find the equation of the curve and area enclosed by the curve and the X-axis in the fourth quadrant. (2004, 5M)

- **35.** Find the area of the region bounded by the curves  $y = x^2$ ,  $y = |2 x^2|$  and y = 2, which lies to the right of the line x = 1. (2002, 5M)
- **36.** Let  $b \neq 0$  and for j = 0, 1, 2, ..., n. If  $S_j$  is the area of the region bounded by the *Y*-axis and the curve  $xe^{ay} = \sin by, \frac{j\pi}{b} \leq y \leq \frac{(j+1)\pi}{(b)}$ . Then, show that

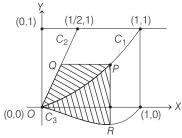
 $S_0,S_1,S_2,\ldots,S_n$  are in geometric progression. Also, find their sum for a=-1 and  $b=\pi$  . (2001,5M)

**37.** If f(x) is a continuous function given by

$$f\left(x\right) = \begin{cases} 2x, & \left|x\right| \leq 1\\ x^2 + ax + b, & \left|x\right| > 1 \end{cases}$$

Then, find the area of the region in the third quadrant bounded by the curves  $x = -2y^2$  and y = f(x) lying on the left on the line 8x + 1 = 0. (1999, 5M)

**38.** Let  $C_1$  and  $C_2$  be the graphs of functions  $y=x^2$  and  $y=2x, 0 \le x \le 1$ , respectively. Let  $C_3$  be the graph of a function  $y=f(x), 0 \le x \le 1$ , f(0)=0. For a point P on  $C_1$ , let the lines through P, parallel to the axes, meet  $C_2$  and  $C_3$  at Q and R respectively (see figure). If for every position of  $P(\text{on } C_1)$  the areas of the shaded regions OPQ and ORP are equal, then determine f(x). (1998, 8M)



- **39.** Let  $f(x) = \max\{x^2, (1-x)^2, 2x(1-x)\}$ , where  $0 \le x \le 1$ . Determine the area of the region bounded by the curves y = f(x), X-axis, x = 0 and x = 1. (1997, 5M)
- **40.** Find all the possible values of b > 0, so that the area of the bounded region enclosed between the parabolas  $y = x bx^2$  and  $y = \frac{x^2}{b}$  is maximum. (1997C, 5M)
- **41.** If  $A_n$  is the area bounded by the curve  $y = (\tan x)^n$  and the lines x = 0, y = 0 and  $x = \frac{\pi}{4}$ .

Then, prove that for n > 2,  $A_n + A_{n+2} = \frac{1}{n+1}$ 

and deduce 
$$\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$$
. (1996, 3M)

- **42.** Consider a square with vertices at (1,1), (-1,1), (-1,-1) and (1,-1). If S is the region consisting of all points inside the square which are nearer to the origin than to any edge. Then, sketch the region S and find its area.
- **43.** In what ratio, does the *X*-axis divide the area of the region bounded by the parabolas  $y = 4x x^2$  and  $y = x^2 x$ ? (1994, 5M)
- **44.** Sketch the region bounded by the curves  $y = x^2$  and  $y = 2/(1 + x^2)$ . Find its area. (1992, 4M)
- **45.** Sketch the curves and identify the region bounded by x = 1/2, x = 2,  $y = \log x$  and  $y = 2^x$ . Find the area of this region. (1991, 4M)
- **46.** Compute the area of the region bounded by the curves  $y = ex \log x$  and  $y = \frac{\log x}{ex}$ , where  $\log e = 1$ . (1990, 4M)
- **47.** Find all maxima and minima of the function  $y = x (x-1)^2, 0 \le x \le 2$ . Also, determine the area bounded by the curve

Also, determine the area bounded by the curve  $y = x(x-1)^2$ , the *Y*-axis and the line x=2. (1989, 5M)

- **48.** Find the area of the region bounded by the curve  $C: y = \tan x$ , tangent drawn to C at  $x = \pi/4$  and the X-axis. (1988, 5M)
- **49.** Find the area bounded by the curves  $x^2 + y^2 = 25$ ,  $4y = |4 x^2|$  and x = 0 above the *X*-axis. (1987, 6M)
- **50.** Find the area bounded by the curves  $x^2 + y^2 = 4$ ,  $x^2 = -\sqrt{2}$  y and x = y. (1986, 5M)
- **51.** Sketch the region bounded by the curves  $y = \sqrt{5 x^2}$  and y = |x 1| and find its area. (1985, 5M)
- **52.** Find the area of the region bounded by the *X*-axis and the curves defined by  $y = \tan x, -\frac{\pi}{3} \le x \le \frac{\pi}{3}$  and  $y = \cot x, \frac{\pi}{6} \le x \le \frac{\pi}{3}$ . (1984, 4M)
- **53.** Find the area bounded by the *X*-axis, part of the curve  $y = \left(1 + \frac{8}{x^2}\right)$  and the ordinates at x = 2 and x = 4. If the ordinate at x = a divides the area into two equal parts, then find a. (1983, 3M)
- **54.** Find the area bounded by the curve  $x^2 = 4y$  and the straight line x = 4y 2.
- **55.** For any real t,  $x = \frac{e^t + e^{-t}}{2}$ ,  $y = \frac{e^t e^{-t}}{2}$  is a point on the hyperbola  $x^2 y^2 = 1$ . Find the area bounded by this hrperbola and the lines joining its centre to the points corresponding to  $t_1$  and  $-t_1$ . (1982, 3M)

#### Answers

#### Topic 1

- **1.** (b) **2.** (b) **3.** (d) **4.** (a)
- **5.** (d) **6.** (b) **7.** (c) 8. (a,d)
- 10.  $2\sqrt{3}$  sq units **9.** (4)
- **11.** 2 sq units **12.**  $(2-\sqrt{3})$  sq unit **13.** (b)
- **15.** (d) **14.** (a)

#### Topic 2

- **2.** (b) **1.** (c) **3.** (d) **4.** (d)
- **5.** (b) **6.** (c) **7.** (b) 8. (c)
- **9.** (a) **10.** (d) **11.** (b) **12.** (a)
- **13.** (a) **14.** (a)
- **15.** (d) **16.** (c) **17.** (d) **18.** (a)
- **19.** (b) **20.** (a) **21.** (c) **22.** (b)
- **24.** (a) **26.** (c) **23.** (b) **25.** (a)
- **30.** (b, c, d) **27.** (c) **29.** (b, d)
- 31. (b, d) 32.  $\frac{125}{3}$  sq units 34.  $y = x^2 2x, \frac{4}{3}$  sq units **33.**  $\frac{1}{3}$  sq unit

- **35.**  $\left(\frac{20-12\sqrt{2}}{3}\right)$  sq units **36.**  $\left[\frac{\pi (1+e)}{(1+\pi^2)} \cdot \frac{(e^{n+1}-1)}{e-1}\right]$

- 37.  $\left(\frac{761}{102}\right)$  sq units 38.  $f(x) = x^3 x^2, 0 \le x \le 1$
- **39.**  $\frac{17}{27}$  sq unit **40.** b=1 **42.**  $\left[\frac{1}{3}(16\sqrt{2}-20)\right]$  sq units
- **43.** 121 : 4 **44.**  $\left(\pi \frac{2}{3}\right)$  sq units
- **45.**  $\left(\frac{4-\sqrt{2}}{\log 2} \frac{5}{2}\log 2 + \frac{3}{2}\right)$  sq units **46.**  $\left(\frac{e^2-5}{4e}\right)$  sq units
- **47.**  $\left(y_{\text{max}} = \frac{4}{27}, y_{\text{min}} = 0, \frac{10}{3} \text{ sq units}\right)$
- **48.**  $\left[ \left( \log \sqrt{2} \frac{1}{4} \right) \text{ sq units} \right]$  **49.**  $\left[ 4 + 25 \sin^{-1} \left( \frac{4}{5} \right) \right] \text{ sq units}$
- **50.**  $\left(\frac{1}{3} \pi\right)$  sq units  $51. \left(\frac{5\pi}{4} \frac{1}{2}\right)$  sq units
- **52.**  $\left(\frac{1}{2}\log_e 3\right)$  sq units **53.**  $2\sqrt{2}$  **54.**  $\frac{9}{8}$  sq units
- **55.**  $\frac{e^{2t_1}-e^{-2t_1}}{4}-\frac{1}{4}(e^{2t_1}-e^{-2t_1}-4t_1)$

## **Hints & Solutions**

#### **Area Based on Geometrical Figures** Without Using Integration

1. We know that, area of region bounded by the parabolas  $x^2 = 4ay$  and  $y^2 = 4bx$  is  $\frac{16}{3}(ab)$  sq units.

On comparing  $y = kx^2$  and  $x = ky^2$  with above equations, we get  $4a = \frac{1}{k}$  and  $4b = \frac{1}{k}$ 

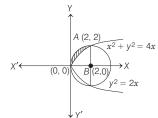
- $a = \frac{1}{4k}$  and  $b = \frac{1}{4k}$
- $\therefore$  Area enclosed between  $y = kx^2$  and  $x = ky^2$  is

$$\frac{16}{3} \left( \frac{1}{4k} \right) \left( \frac{1}{4k} \right) = \frac{1}{3k^2}$$

- $\frac{1}{3k^2} = 1$  [given, area = 1 sq.unit]  $\Rightarrow$
- $k^2 = \frac{1}{3}$   $\Rightarrow$   $k = \pm \frac{1}{\sqrt{3}}$
- [:: k > 0]
- **2.** Given equations of curves are  $y^2 = 2x$ which is a parabola with vertex (0, 0) and axis parallel to X-axis.  $x^2 + y^2 = 4x$ which is a circle with centre (2, 0) and radius = 2 ...(ii)

On substituting  $y^2 = 2x$  in Eq. (ii), we get  $x^2 + 2x = 4x \implies x^2 = 2x \implies x = 0 \text{ or } x = 2$ y = 0 or  $y = \pm 2$ [using Eq. (i)]

Now, the required area is the area of shaded region, i.e.



Required area =  $\frac{\text{Area of a circle}}{4} - \int_{0}^{2} \sqrt{2x} \ dx$  $= \frac{\pi (2)^2}{4} - \sqrt{2} \int_0^2 x^{1/2} dx = \pi - \sqrt{2} \left[ \frac{x^{3/2}}{3/2} \right]^2$  $=\pi - \frac{2\sqrt{2}}{3} [2\sqrt{2} - 0] = \left(\pi - \frac{8}{3}\right)$  sq unit

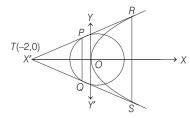
- **3. PLAN** (i) y = mx + a/m is an equation of tangent to the parabola  $y^2 = 4ax$ .
  - (ii) A line is a tangent to circle, if distance of line from centre is equal to the radius of circle.
  - Equation of chord drawn from exterior point  $(x_1, y_1)$  to a circle/parabola is given by T = 0.
  - (iv) Area of trapezium =  $\frac{1}{2}$  (Sum of parallel sides)

Let equation of tangent to parabola be  $y = mx + \frac{2}{m}$ 

It also touches the circle  $x^2 + y^2 = 2$ .

So, tangents are y = x + 2, y = -x - 2.

They, intersect at (-2,0).



Equation of chord PQ is  $-2x = 2 \implies x = -1$ 

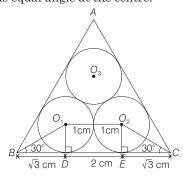
Equation of chord RS is  $O = 4(x-2) \implies x = 2$ 

 $\therefore$  Coordinates of P, Q, R, S are

$$P(-1,1), Q(-1,-1), R(2,4), S(2,-4)$$

$$\therefore \text{ Area of quadrilateral} = \frac{(2+8)\times3}{2} = 15 \text{ sq units}$$

4. Since, tangents drawn from external points to the circle subtends equal angle at the centre.



$$\therefore \qquad \angle \ O_1BD = 30^\circ$$
 
$$\text{In } \Delta O_1BD, \ \tan 30^\circ = \frac{O_1D}{BD} \ \Rightarrow \ BD = \sqrt{3} \text{ cm}$$

Also,

$$DE = O_1O_2 = 2 \text{ cm} \text{ and } EC = \sqrt{3} \text{ cm}$$

$$BC = BD + DE + EC = 2 + 2\sqrt{3}$$

$$\Rightarrow$$
 Area of  $\triangle ABC = \frac{\sqrt{3}}{4} (BC)^2 = \frac{\sqrt{3}}{4} \cdot 4 (1 + \sqrt{3})^2$   
= (6 + 4  $\sqrt{3}$ ) sq cm

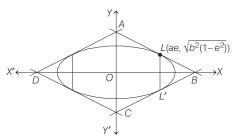
**5.** Given, 
$$\frac{x^2}{9} + \frac{y^2}{5} = 1$$

To find tangents at the end points of latusrectum, we find ae.

i.e. 
$$ae = \sqrt{a^2 - b^2} = \sqrt{4} = 2$$

and 
$$\sqrt{b^2(1-e^2)} = \sqrt{5\left(1-\frac{4}{9}\right)} = \frac{5}{3}$$

By symmetry, the quadrilateral is a rhombus.



So, area is four times the area of the right angled triangle formed by the tangent and axes in the Ist quadrant.

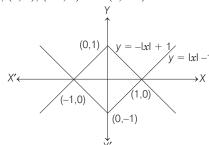
 $\therefore$  Equation of tangent at  $\left(2, \frac{5}{2}\right)$  is

$$\frac{2}{9}x + \frac{5}{3} \cdot \frac{y}{5} = 1 \implies \frac{x}{9/2} + \frac{y}{3} = 1$$

∴ Area of quadrilateral ABCD

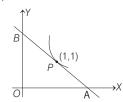
= 4 [area of 
$$\triangle AOB$$
]  
=  $4\left(\frac{1}{2}\cdot\frac{9}{2}\cdot3\right)$  = 27 sq units

6. The region is clearly square with vertices at the points (1, 0), (0, 1), (-1, 0) and (0, -1).



 $\therefore$  Area of square =  $\sqrt{2} \times \sqrt{2} = 2$  sq units

7. Let  $y = f(x) = x^2 + bx - b$ 



The equation of the tangent at P(1, 1)to the curve  $2y = 2x^2 + 2bx - 2b$  is

$$y+1 = 2x \cdot 1 + b(x+1) - 2b$$

$$y = (2 + b) x - (1 + b)$$

Its meet the coordinate axes at

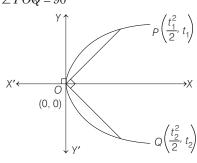
$$x_A = \frac{1+b}{2+b}$$
 and  $y_B = -(1+b)$ 

∴ Area of  $\triangle OAB = \frac{1}{2} OA \times OB$ 

$$=-\frac{1}{2} \times \frac{(1+b)^2}{(2+b)} = 2$$
 [given]

$$\Rightarrow (1+b)^{2} + 4(2+b) = 0 \Rightarrow b^{2} + 6b + 9 = 0$$
  
\Rightarrow (b+3)^{2} = 0 \Rightarrow b = -3

8. Since,  $\angle POQ = 90^{\circ}$ 

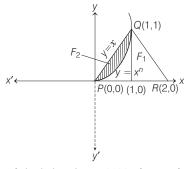


 $\Rightarrow \frac{t_1 - 0}{\frac{t_1^2}{2} - 0} \cdot \frac{t_2 - 0}{\frac{t_2^2}{2} - 0} = -1 \Rightarrow t_1 t_2 = -4$ 

$$\begin{array}{lll} & \text{ ar } (\Delta OPQ) = 3\sqrt{2} \\ & \therefore & \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ t_1^2/2 & t_1 & 1 \\ t_2^2/2 & t_2 & 1 \end{vmatrix} = \pm 3\sqrt{2} & \Rightarrow & \frac{1}{2} \left( \frac{t_1^2 t_2}{2} - \frac{t_1 t_2^2}{2} \right) = \pm 3\sqrt{2} \\ & \Rightarrow & \frac{1}{4} \left( -4t_1 + 4t_2 \right) = \pm 3\sqrt{2} \Rightarrow t_1 + \frac{4}{t_1} = 3\sqrt{2} \quad [\because t_1 > 0 \text{ for } P] \\ & \Rightarrow & t_1^2 - 3\sqrt{2}t_1 + 4 = 0 & \Rightarrow & (t_1 - 2\sqrt{2}) \left( t_1 - \sqrt{2} \right) = 0 \\ & \Rightarrow & t_1 = \sqrt{2} \quad \text{or} \quad 2\sqrt{2} \\ & \therefore \qquad P \left( 1, \sqrt{2} \right) \quad \text{or} \quad P \left( 4, 2\sqrt{2} \right) \\ \end{array}$$

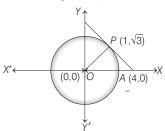
**9.** We have,  $y = x^n, n > 1$ 

P(0,0)Q(1,1) and R(2,0) are vertices of  $\Delta PQR$ .



 $\therefore$  Area of shaded region = 30% of area of  $\triangle PQR$  $\Rightarrow \int_0^1 (x - x^n) dx = \frac{30}{100} \times \frac{1}{2} \times 2 \times 1$  $\Rightarrow \left[\frac{x^2}{2} - \frac{x^{n+1}}{n+1}\right]_0^1 = \frac{3}{10} \Rightarrow \left(\frac{1}{2} - \frac{1}{n+1}\right) = \frac{3}{10}$  $\Rightarrow \frac{1}{n+1} = \frac{1}{2} - \frac{3}{10} = \frac{2}{10} = \frac{1}{5} \Rightarrow n+1=5 \Rightarrow n=4$ 

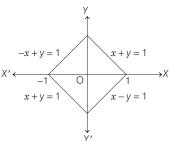
**10.** Equation of tangent at the point  $(1, \sqrt{3})$  to the curve  $x^2 + y^2 = 4$  is  $x + \sqrt{3}y = 4$ whose X-axis intercept (4, 0).



Thus, area of  $\Delta$  formed by (0, 0)  $(1, \sqrt{3})$  and (4, 0)

$$= \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & \sqrt{3} & 1 \\ 4 & 0 & 1 \end{vmatrix} = \frac{1}{2} |(0 - 4\sqrt{3})| = 2\sqrt{3} \text{ sq units}$$

**11.** The area formed by |x| + |y| = 1 is square shown as below



- $\therefore$  Area of square =  $(\sqrt{2})^2 = 2$  sq units
- **12.** Let the coordinates of P be (x, y).



Equation of line OA be y = 0.

Equation of line *OB* be  $\sqrt{3} y = x$ .

Equation of line *AB* be  $\sqrt{3} y = 2 - x$ .

d(P, OA) = Distance of P from line <math>OA = y

 $d(P, OB) = \text{Distance of } P \text{ from line } OB = \frac{|\sqrt{3}y - x|}{2}$ 

 $d(P, AB) = \text{Distance of } P \text{ from line} AB = \frac{|\sqrt{3}y + x - 2|}{2}$ 

Given,  $d(P, OA) \le \min \{d(P, OB), d(P, AB)\}\$ 

$$y \le \min \left\{ \frac{|\sqrt{3}y - x|}{2}, \frac{|\sqrt{3}y + x - 2|}{2} \right\}$$

$$\Rightarrow \qquad y \le \frac{|\sqrt{3}y - x|}{2} \quad \text{and} \quad y \le \frac{|\sqrt{3}y + x - 2|}{2}$$

$$\Rightarrow y \le \frac{|\sqrt{3}y - x|}{2} \text{ and } y \le \frac{|\sqrt{3}y + x - 2|}{2}$$

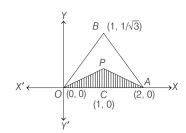
$$Case I \quad \text{When } y \le \frac{|\sqrt{3}y - x|}{2} \quad [\text{since}, \sqrt{3}y - x < 0]$$

$$y \le \frac{x - \sqrt{3}y}{2} \quad \Rightarrow \quad (2 + \sqrt{3})y \le x \Rightarrow y \le x \tan 15^{\circ}$$

Case II When  $y \le \frac{|\sqrt{3}y + x - 2|}{2}$ ,

$$2y \le 2 - x - \sqrt{3}y \quad [\text{since}, \sqrt{3}y + x - 2 < 0]$$
  
(2 +  $\sqrt{3}$ )  $y \le 2 - x \Rightarrow y \le \tan 15^\circ \cdot (2 - x)$ 

$$\Rightarrow (2+\sqrt{3})y \le 2-x \Rightarrow y \le \tan 15^{\circ} \cdot (2-x)$$



From above discussion, P moves inside the triangle as shown below:

⇒ Area of shaded region

= Area of 
$$\triangle OQA$$
  
=  $\frac{1}{2}$  (Base) × (Height)  
=  $\frac{1}{2}$  (2) (tan 15°) = tan 15° = (2 -  $\sqrt{3}$ ) sq unit

13. Given, 
$$y^3 - 3y + x = 0$$

$$\Rightarrow 3y^2 \frac{dy}{dx} - 3\frac{dy}{dx} + 1 = 0 \qquad ...(i)$$

$$\Rightarrow 3y^2 \left(\frac{d^2y}{dx^2}\right) + 6y\left(\frac{dy}{dx}\right)^2 - 3\frac{d^2y}{dx^2} = 0 \qquad \dots \text{(ii)}$$

At 
$$x = -10 \sqrt{2}$$
,  $y = 2\sqrt{2}$ 

 $\Rightarrow$ 

On substituting in Eq. (i) we get

$$3(2\sqrt{2})^2 \cdot \frac{dy}{dx} - 3 \cdot \frac{dy}{dx} + 1 = 0$$

$$\frac{dy}{dx} = -\frac{1}{2}$$

Again, substituting in Eq. (ii), we get

$$3(2\sqrt{2})^{2} \frac{d^{2}y}{dx^{2}} + 6(2\sqrt{2}) \cdot \left(-\frac{1}{21}\right)^{2} - 3 \cdot \frac{d^{2}y}{dx^{2}} = 0$$

$$\Rightarrow \qquad 21 \cdot \frac{d^{2}y}{dx^{2}} = -\frac{12\sqrt{2}}{(21)^{2}}$$

$$\Rightarrow \qquad \frac{d^{2}y}{dx^{2}} = \frac{-12\sqrt{2}}{(21)^{3}} = \frac{-4\sqrt{2}}{7^{3} \cdot 3^{2}}$$

14. Required area 
$$= \int_{a}^{b} y \, dx = \int_{a}^{b} f(x) \, dx$$

$$= [f(x) \cdot x]_{a}^{b} - \int_{a}^{b} f'(x)x \, dx$$

$$= bf(b) - af(a) - \int_{a}^{b} f'(x)x \, dx$$

$$= bf(b) - af(a) + \int_{a}^{b} \frac{x dx}{3[\{f(x)\}^{2} - 1]}$$

$$[ \because f'(x) = \frac{dy}{dx} = \frac{-1}{3(y^{2} - 1)} = \frac{-1}{3[\{f(x)\}^{2} - 1]} ]$$

**15.** Let 
$$I = \int_{-1}^{1} g'(x) dx = [g(x)]_{-1}^{1} = g(1) - g(-1)$$

Since, 
$$y^3 - 3y + x = 0$$
 ...(i)  
and  $y = g(x)$   
 $\therefore \{g(x)\}^3 - 3g(x) + x = 0$  [from Eq. (i)]  
At  $x = 1$ ,  $\{g(1)\}^3 - 3g(1) + 1 = 0$  ...(ii)  
At  $x = -1$ ,  $\{g(-1)\}^3 - 3g(-1) - 1 = 0$  ...(iii)

On adding Eqs. (i) and (ii), we get

On adding Eqs. (1) and (11), we get 
$$\{g(1)\}^3 + \{g(-1)\}^3 - 3\{g(1) + g(-1)\} = 0$$
  
 $\Rightarrow [g(1) + g(-1)][\{g(1)\}^2 + \{g(-1)\}^2 - g(1)g(-1) - 3] = 0$   
 $\Rightarrow g(1) + g(-1) = 0$   
 $\Rightarrow g(1) = -g(-1)$   
 $\therefore I = g(1) - g(-1)$   
 $= g(1) - \{-g(1)\} = 2g(1)$ 

#### **Topic 2** Area Using Integration

1. Given, equation of curves are

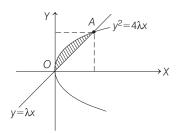
and

$$y^{2} = 4\lambda x \qquad \dots(i)$$

$$y = \lambda x \qquad \dots(ii)$$

$$\lambda > 0$$

Area bounded by above two curve is, as per figure



the intersection point A we will get on the solving Eqs. (i) and (ii), we get

$$\lambda^2 x^2 = 4\lambda x$$

$$\Rightarrow \qquad x = \frac{4}{\lambda}, \text{ so } y = 4.$$
So,
$$A\left(\frac{4}{\lambda}, 4\right)$$

Now, required area is

$$= \int_{0}^{4/\lambda} (2\sqrt{\lambda x} - \lambda x) dx$$

$$= 2\sqrt{\lambda} \left[ \frac{x^{3/2}}{\frac{3}{2}} \right]_{0}^{4/\lambda} - \lambda \left[ \frac{x^{2}}{2} \right]_{0}^{4/\lambda}$$

$$= \frac{4}{3} \sqrt{\lambda} \frac{4\sqrt{4}}{\lambda \sqrt{\lambda}} - \frac{\lambda}{2} \left( \frac{4}{\lambda} \right)^{2}$$

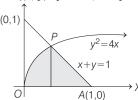
$$= \frac{32}{3\lambda} - \frac{8}{\lambda} = \frac{32 - 24}{3\lambda} = \frac{8}{3\lambda}$$

It is given that area =  $\frac{1}{0}$ 

$$\Rightarrow \frac{8}{3\lambda} = \frac{8}{3\lambda}$$

$$\Rightarrow \lambda = \frac{1}{3\lambda}$$

**2.** Given region is  $\{(x, y): y^2 \le 4x, x + y \le 1, x \ge 0, y \ge 0\}$ 



Now, for point P, put value of y = 1 - x to  $y^2 = 4x$ , we get

$$(1-x)^2 = 4x \Rightarrow x^2 + 1 - 2x = 4x$$

$$\Rightarrow \qquad x^2 - 6x + 1 = 0$$

$$\Rightarrow \qquad x = \frac{6 \pm \sqrt{36 - 4}}{2}$$

$$= 3 \pm 2\sqrt{2}.$$

Since, x-coordinate of P less than x-coordinate of point A(1,0).

$$\therefore x = 3 - 2\sqrt{2}$$

Now, required area

$$= \int_{0}^{3-2\sqrt{2}} 2\sqrt{x} \, dx + \int_{3-2\sqrt{2}}^{1} (1-x) \, dx$$

$$= 2 \left| \frac{x^{3/2}}{3/2} \right|_{0}^{3-2\sqrt{2}} + \left[ x - \frac{x^{2}}{2} \right]_{3-2\sqrt{2}}^{1}$$

$$= \frac{4}{3} (3 - 2\sqrt{2})^{3/2} + \left( 1 - \frac{1}{2} \right) - (3 - 2\sqrt{2}) + \frac{(3 - 2\sqrt{2})^{2}}{2}$$

$$= \frac{4}{3} \left[ (\sqrt{2} - 1)^{2} \right]^{3/2} + \frac{1}{2} - 3 + 2\sqrt{2} + \frac{1}{2} (9 + 8 - 12\sqrt{2})$$

$$= \frac{4}{3} (\sqrt{2} - 1)^{3} - \frac{5}{2} + 2\sqrt{2} + \frac{17}{2} - 6\sqrt{2}$$

$$= \frac{4}{3} (2\sqrt{2} - 3(2) + 3(\sqrt{2}) - 1) - 4\sqrt{2} + 6$$

$$= \frac{4}{3} (5\sqrt{2} - 7) - 4\sqrt{2} + 6 = \frac{8\sqrt{2}}{3} - \frac{10}{3}$$

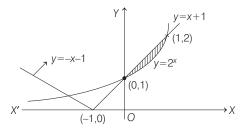
So, on comparing 
$$a = \frac{8}{3}$$
 and  $b = -\frac{10}{3}$ 

$$\therefore \qquad a-b=\frac{8}{3}+\frac{10}{3}=6$$

3. Given, equations of curve

$$y = 2^x$$
 and  $y = |x + 1| = \begin{cases} x + 1, & x \ge -1 \\ -x - 1, & x < -1 \end{cases}$ 

: The figure of above given curves is



In first quadrant, the above given curves intersect each other at (1, 2).

So, the required area =  $\int_0^1 ((x+1)-2^x) dx$ 

$$= \left[ \frac{x^2}{2} + x - \frac{2^x}{\log_e 2} \right]_0^1 \quad \left[ \because \int a^x dx = \frac{a^x}{\log_e a} + C \right]$$

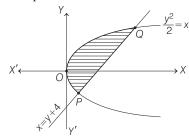
$$= \left[ \frac{1}{2} + 1 - \frac{2}{\log_e 2} + \frac{1}{\log_e 2} \right]$$

$$= \frac{3}{2} - \frac{1}{\log_e 2}$$

**4.** Given region  $A = \left\{ (x, y) : \frac{y^2}{2} \le x \le y + 4 \right\}$ 

$$\Rightarrow y^2 = 2x \qquad ...(i)$$
 and  $x = y + 4 \Rightarrow y = x - 4 \qquad ...(ii)$ 

Graphical representation of A is



On substituting y = x - 4 from Eq. (ii) to Eq. (i), we get

On substituting 
$$y = x - 4$$
 from Eq. (ii) to Eq. (i), we get
$$(x - 4)^2 = 2x$$

$$\Rightarrow \qquad x^2 - 8x + 16 = 2x$$

$$\Rightarrow \qquad x^2 - 10x + 16 = 0$$

$$\Rightarrow \qquad (x - 2)(x - 8) = 0$$

$$\Rightarrow \qquad x = 2, 8$$

$$\therefore \qquad y = -2, 4 \qquad \text{[from Eq. (ii)]}$$

So, the point of intersection of Eqs. (i) and

(ii) are P(2, -2) and Q(8, 4).

(given)

Now, the area enclosed by the region A

$$= \int_{-2}^{4} \left[ (y+4) - \frac{y^2}{2} \right] dy = \left[ \frac{y^2}{2} + 4y - \frac{y^3}{6} \right]_{-2}^{4}$$

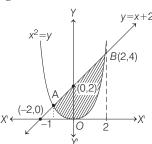
$$= \left( \frac{16}{2} + 16 - \frac{64}{6} \right) - \left( \frac{4}{2} - 8 + \frac{8}{6} \right)$$

$$= 8 + 16 - \frac{32}{3} - 2 + 8 - \frac{4}{3}$$

$$= 30 - 12 = 18 \text{ sq unit.}$$

**5.** Given region is  $A = \{(x, y) : x^2 \le y \le x + 2\}$ 

Now, the region is shown in the following graph



For intersecting points A and B

Taking, 
$$x^{2} = x + 2 \Rightarrow x^{2} - x - 2 = 0$$

$$\Rightarrow \qquad x^{2} - 2x + x - 2 = 0$$

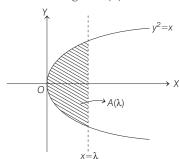
$$\Rightarrow \qquad x(x - 2) + 1(x - 2) = 0$$

$$\Rightarrow \qquad x = -1, 2 \Rightarrow y = 1, 4$$
So  $A(1, 1)$  and  $B(2, 4)$ 

So, A(-1, 1) and B(2, 4).

Now, shaded area = 
$$\int_{-1}^{2} [(x+2) - x^{2}] dx$$
= 
$$\left[ \frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \right]_{-1}^{2} = \left( \frac{4}{2} + 4 - \frac{8}{3} \right) - \left( \frac{1}{2} - 2 + \frac{1}{3} \right)$$
= 
$$8 - \frac{1}{2} - \frac{9}{3} = 8 - \frac{1}{2} - 3 = 5 - \frac{1}{2} = \frac{9}{2} \text{ sq units}$$

**6.** Given,  $S(\alpha) = \{(x, y) : y^2 \le x, 0 \le x \le \alpha\}$  and  $A(\alpha)$  is area of the region  $S(\alpha)$ 



Clearly, 
$$A(\lambda) = 2 \int_{0}^{\lambda} \sqrt{x} \, dx = 2 \left[ \frac{x^{3/2}}{3/2} \right]_{0}^{\lambda} = \frac{4}{3} \lambda^{3/2}$$

Since, 
$$\frac{A(\lambda)}{A(4)} = \frac{2}{5}$$
,  $(0 < \lambda < 4)$ 

$$\Rightarrow \frac{\lambda^{3/2}}{4^{3/2}} = \frac{2}{5} \Rightarrow \left(\frac{\lambda}{4}\right)^3 = \left(\frac{2}{5}\right)^2$$

$$\Rightarrow \qquad \qquad \frac{\lambda}{4} = \left(\frac{4}{25}\right)^{1/3} \Rightarrow \qquad \lambda = 4 \left(\frac{4}{25}\right)^{1/3}$$

7. Given equations of the parabola  $y^2 = 4x$  ...(i) and circle  $x^2 + y^2 = 5$  ...(ii)

So, for point of intersection of curves (i) and (ii), put  $y^2 = 4x$  in Eq. (ii), we get

$$x^{2} + 4x - 5 = 0$$

$$\Rightarrow \qquad x^{2} + 5x - x - 5 = 0$$

$$\Rightarrow \qquad (x - 1)(x + 5) = 0$$

For first quadrant x = 1, so y = 2.

Now, equation of tangent of parabola (i) at point (1, 2) is T = 0

$$\Rightarrow$$
 2  $y = 2(x + 1)$ 

$$\Rightarrow x - y + 1 = 0$$

The point  $\left(\frac{3}{4}, \frac{7}{4}\right)$  satisfies, the equation of line

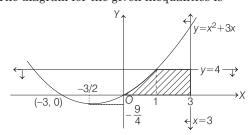
$$x - y + 1 = 0$$

**8.** Given,  $y \le x^2 + 3x$ 

$$\Rightarrow \qquad y \le \left(x + \frac{3}{2}\right)^2 - \frac{9}{4} \Rightarrow \left(x + \frac{3}{2}\right)^2 \ge \left(y + \frac{9}{4}\right)$$

Since,  $0 \le y \le 4$  and  $0 \le x \le 3$ 

∴The diagram for the given inequalities is



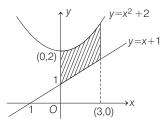
and points of intersection of curves  $y = x^2 + 3x$  and y = 4 are (1, 4) and (-4, 4)

Now required area

$$= \int_{0}^{1} (x^{2} + 3x) dx + \int_{1}^{3} 4 dx = \left[ \frac{x^{3}}{3} + \frac{3x^{2}}{2} \right]_{0}^{1} + [4x]_{1}^{3}$$

$$= \frac{1}{3} + \frac{3}{2} + 4(3 - 1) = \frac{2 + 9}{6} + 8 = \frac{11}{6} + 8 = \frac{59}{6} \text{ sq units}$$

**9.** Given equation of parabola is  $y = x^2 + 2$ , and the line is y = x + 1



The required area = area of shaded region

$$= \int_0^3 ((x^2 + 2) - (x + 1)) dx = \int_0^3 (x^2 - x + 1) dx$$

$$= \left[\frac{x^3}{3} - \frac{x^2}{2} + x\right]_0^3 = \left(\frac{27}{3} - \frac{9}{2} + 3\right) - 0$$

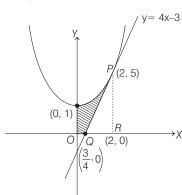
$$=9-\frac{9}{2}+3=12-\frac{9}{2}=\frac{15}{2}$$
 sq units

**10.** Given, equation of parabola is  $y = x^2 + 1$ , which can be written as  $x^2 = (y - 1)$ . Clearly, vertex of parabola is (0, 1) and it will open upward.

Now, equation of tangent at (2, 5) is  $\frac{y+5}{2} = 2x + 1$ 

[: Equation of the tangent at  $(x_1, y_1)$  is given by T=0. Here,  $\frac{1}{2}(y+y_1)=xx_1+1]$ 

$$y = 4x - 3$$



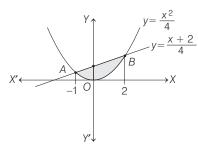
Required area = Area of shaded region  $\int_{-\infty}^{2} \sqrt{1 - \frac{1}{2}} dx = \int_{-\infty}^{2} \sqrt{1 - \frac{1}{2}} dx$ 

$$= \int_0^2 y(\text{parabola}) \, dx - (\text{Area of } \Delta PQR)$$
$$= \int_0^2 (x^2 + 1) \, dx - (\text{Area of } \Delta PQR)$$
$$= \left(\frac{x^3}{3} + x\right)^2 - \frac{1}{2} \left(2 - \frac{3}{4}\right) \cdot 5$$

[: Area of a triangle =  $\frac{1}{2} \times \text{base} \times \text{height}$ ]

$$= \left(\frac{8}{3} + 2\right) - 0 - \frac{1}{2} \left(\frac{5}{4}\right) 5$$
$$= \frac{14}{3} - \frac{25}{8} = \frac{112 - 75}{24} = \frac{37}{24}$$

11. Given equation of curve is  $x^2 = 4y$ , which represent a parabola with vertex (0, 0) and it open upward



Now, let us find the points of intersection of  $x^2 = 4y$  and

For this consider,  $x^2 = x + 2$ 

$$\Rightarrow \qquad (x-2)(x+1) = 0$$

$$\Rightarrow x = -1, x = 2$$

When 
$$x = -1$$
, then  $y = \frac{1}{4}$ 

and when x=2, then y=1Thus, the points of intersection are  $A\left(-1,\frac{1}{4}\right)$  and B (2, 1). Now, required area = area of shaded region

$$= \int_{-1}^{2} \{y(\text{line}) - y \text{ (parabola)}\} dx$$

$$= \int_{-1}^{2} \left( \frac{x+2}{4} - \frac{x^2}{4} \right) dx = \frac{1}{4} \left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$
$$= \frac{1}{4} \left[ \left( 2 + 4 - \frac{8}{3} \right) - \left( \frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$
$$= \frac{1}{4} \left[ 8 - \frac{1}{2} - 3 \right] = \frac{1}{4} \left[ 5 - \frac{1}{2} \right] = \frac{9}{8} \text{ sq units.}$$

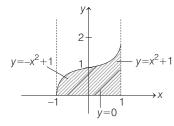
**12.** We have,

$$A = \{(x, y) : 0 \le y \le x \mid x \mid + 1 \text{ and } -1 \le x \le 1\}$$

When 
$$x \ge 0$$
, then  $0 \le y \le x^2 + 1$ 

and when 
$$x < 0$$
, then  $0 \le y \le -x^2 + 1$ 

Now, the required region is the shaded region.



[:  $y = x^2 + 1 \Rightarrow x^2 = (y - 1)$ , parabola with vertex (0, 1) and  $y = -x^2 + 1 \Rightarrow x^2 = -(y - 1)$ ,

parabola with vertex (0,1) but open downward]

We need to calculate the shaded area, which is equal to

$$\int_{-1}^{0} (-x^2 + 1) dx + \int_{0}^{1} (x^2 + 1) dx$$

$$= \left[ -\frac{x^3}{3} + x \right]_{-1}^{0} + \left[ \frac{x^3}{3} + x \right]_{0}^{1}$$

$$= \left( 0 - \left[ -\frac{(-1)^3}{3} + (-1) \right] \right) + \left( \left[ \frac{1}{3} + 1 \right] - 0 \right)$$

$$= -\left( \frac{1}{3} - 1 \right) + \frac{4}{3}$$

$$= \frac{2}{3} + \frac{4}{3} = 2$$

**13.** Given, equation of parabola is  $y = x^2 - 1$ , which can be rewritten as  $x^2 = y + 1$  or  $x^2 = (y - (-1))$ .

 $\Rightarrow$  Vertex of parabola is (0, -1) and it is open upward.

Equation of tangent at 
$$(2, 3)$$
 is given by  $T = 0$ 

$$\Rightarrow \frac{y + y_1}{2} = x x_1 - 1, \text{ where, } x_1 = 2$$

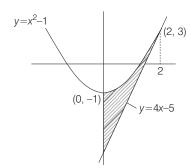
$$y_1 = 3$$
.

$$\Rightarrow$$

$$\frac{y+3}{2} = 2x - 1$$

$$\Rightarrow$$

$$y = 4x - 5$$



Now, required area = area of shaded region

$$= \int_0^2 (y(\text{parabola}) - y(\text{tangent})) dx$$

$$= \int_0^2 [(x^2 - 1) - (4x - 5)] dx$$

$$= \int_0^2 (x^2 - 4x + 4) \ dx = \int_0^2 (x - 2)^2 \ dx$$

$$= \left| \frac{(x-2)^3}{3} \right|^2 = \frac{(2-2)^3}{3} - \frac{(0-2)^3}{3} = \frac{8}{3} \text{ sq units.}$$

**14.** We have,

$$18x^2 - 9\pi x + \pi^2 = 0$$

$$18x^2 - 6\pi x - 3\pi x + \pi^2 = 0$$

$$(6x - \pi)(3x - \pi) = 0$$

$$\alpha = \frac{\pi}{6},$$

$$\alpha = \frac{\pi}{6},$$

Now, 
$$\alpha < \beta$$
 
$$\alpha = \frac{\pi}{6}$$
 
$$\beta = \frac{\pi}{3}$$

Given,  $g(x) = \cos x^2$  and  $f(x) = \sqrt{x}$ 

$$y = gof(x)$$

$$y = g(f(x)) = \cos x$$

Area of region bounded by  $x = \alpha, x = \beta, y = 0$  and curve y = g(f(x)) is

$$A = \int_{\pi/6}^{\pi/3} \cos x \, dx$$

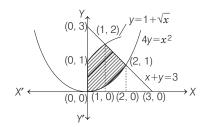
$$A = [\sin x]_{\pi/6}^{\pi/3}$$

$$A = \sin \frac{\pi}{3} - \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} - \frac{1}{2}$$

$$A = \left(\frac{\sqrt{3} - 1}{2}\right)$$

#### 15. Required area

$$= \int_0^1 (1 + \sqrt{x}) dx + \int_1^2 (3 - x) dx - \int_0^2 \frac{x^2}{4} dx$$



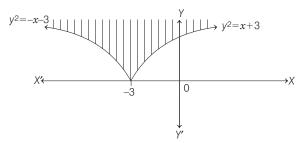
$$= \left[x + \frac{x^{3/2}}{3/2}\right]_0^1 + \left[3x - \frac{x^2}{2}\right]_1^2 - \left[\frac{x^3}{12}\right]_0^2$$
$$= \left(1 + \frac{2}{3}\right) + \left(6 - 2 - 3 + \frac{1}{2}\right) - \left(\frac{8}{12}\right)$$
$$= \frac{5}{3} + \frac{3}{2} - \frac{2}{3} = 1 + \frac{3}{2} = \frac{5}{2} \text{ sq units}$$

#### **16.** Here, $\{(x, y) \in \mathbb{R}^2 : y \ge \sqrt{|x+3|}, 5y \le (x+9) \le 15\}$

$$y \ge \sqrt{x+3}$$

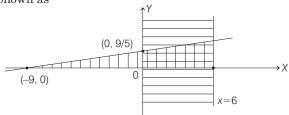
$$\Rightarrow \qquad y \ge \begin{cases} \sqrt{x+3}, & \text{when } x \ge -3 \\ \sqrt{-x-3}, & \text{when } x \le -3 \end{cases}$$
or
$$y^2 \ge \begin{cases} x+3, & \text{when } x \ge -3 \\ -3-x, & \text{when } x \le -3 \end{cases}$$

Shown as

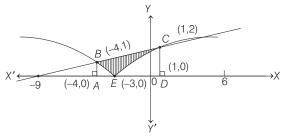


Also, 
$$5y \le (x+9) \le 15$$
  
 $\Rightarrow (x+9) \ge 5y$  and  $x \le 6$ 

Shown as



 $\therefore \{(x, y) \in \mathbb{R}^2 : y \ge \sqrt{|x+3|}, 5y \le (x+9) \le 15\}$ 



 $\therefore$  Required area = Area of trapezium ABCD

- Area of ABE under parabola

- Area of CDE under parabola

$$= \frac{1}{2} (1+2) (5) - \int_{-4}^{-3} \sqrt{-(x+3)} \, dx - \int_{-3}^{1} \sqrt{(x+3)} \, dx$$

$$= \frac{15}{2} - \left[ \frac{(-3-x)^{3/2}}{-\frac{3}{2}} \right]_{-4}^{-3} - \left[ \frac{(x+3)^{3/2}}{\frac{3}{2}} \right]_{-2}^{1}$$

$$= \frac{15}{2} + \frac{2}{3} [0 - 1] - \frac{2}{3} [8 - 0] = \frac{15}{2} - \frac{2}{3} - \frac{16}{3} = \frac{15}{2} - \frac{18}{3} = \frac{3}{2}$$

**17.** Given region is  $\{(x, y) : y^2 \le 2x \text{ and } y \ge 4x - 1\}$ 

 $y^2 \le 2x$  repressents a region inside the parabola  $y^2 = 2x$ 

$$y^2 = 2x$$
 ...(i)

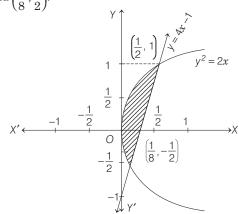
and  $y \ge 4x - 1$  represents a region to the left of the line

$$y = 4x - 1 \qquad \qquad \dots (i$$

The point of intersection of the curves (i) and (ii) is  $(4x-1)^2 = 2x \implies 16x^2 + 1 - 8x = 2x$ 

$$\Rightarrow 16x^2 - 10x + 11 = 0 \Rightarrow x = \frac{1}{2}, \frac{1}{8}$$

So, the points where these curves intersect are  $\left(\frac{1}{2},1\right)$ and  $\left(\frac{1}{8}, \frac{1}{2}\right)$ .



$$\therefore \text{ Required area} = \int_{-1/2}^{1} \left( \frac{y+1}{4} - \frac{y^2}{2} \right) dy$$

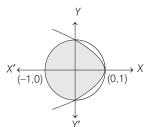
$$= \frac{1}{4} \left( \frac{y^2}{2} + y \right)_{-1/2}^{-1} - \frac{1}{6} (y^3)_{-1/2}^{1}$$

$$= \frac{1}{4} \left\{ \left( \frac{1}{2} + 1 \right) - \left( \frac{1}{8} - \frac{1}{2} \right) \right\} - \frac{1}{6} \left\{ 1 + \frac{1}{8} \right\}$$

$$= \frac{1}{4} \left\{ \frac{3}{2} + \frac{3}{8} \right\} - \frac{1}{6} \left\{ \frac{9}{8} \right\}$$

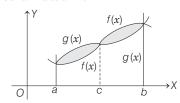
$$= \frac{1}{4} \times \frac{15}{8} - \frac{3}{16} = \frac{9}{32} \text{ sq units}$$

**18.** Given,  $A = \{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ 



Required area = 
$$\frac{1}{2}\pi r^2 + 2\int_0^1 (1 - y^2) dy$$
  
=  $\frac{1}{2}\pi (1)^2 + 2\left(y - \frac{y^3}{3}\right)_0^1$   
=  $\left(\frac{\pi}{2} + \frac{4}{3}\right)$  sq units

**19.** PLAN To find the bounded area between y = f(x) and y = g(x) between x = a to x = b.



$$\therefore \text{ Area bounded} = \int_a^c [g(x) - f(x)] dx + \int_c^b [f(x) - g(x)] dx$$
$$= \int_a^b |f(x) - g(x)| dx$$

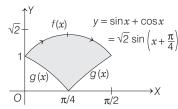
Here,  $f(x) = y = \sin x + \cos x$ , when  $0 \le x \le \frac{\pi}{2}$ 

and

$$g(x) = y = |\cos x - \sin x|$$

$$= \begin{cases} \cos x - \sin x, & 0 \le x \le \frac{\pi}{4} \\ \sin x - \cos x, & \frac{\pi}{4} \le x \le \frac{\pi}{2} \end{cases}$$

could be shown as



$$\therefore \text{ Area bounded} = \int_0^{\pi/4} \{ (\sin x + \cos x) - (\cos x - \sin x) \} dx$$

$$+ \int_{\pi/4}^{\pi/2} \{ (\sin x + \cos x) - (\sin x - \cos x) \} dx$$

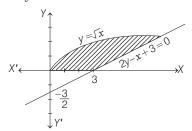
$$= \int_0^{\pi/4} 2 \sin x \, dx + \int_{\pi/4}^{\pi/2} 2 \cos x \, dx$$

$$= -2 \left[ \cos x \right]_0^{\pi/4} + 2 \left[ \sin x \cdot n \right]_{\pi/4}^{\pi/2}$$

$$= 4 - 2\sqrt{2} = 2\sqrt{2}(\sqrt{2} - 1) \text{ sq units}$$

**20.** Given curves are  $y = \sqrt{x}$  ...(i)

and 2y - x + 3 = 0 ...(ii)



On solving Eqs. (i) and (ii), we get

$$2\sqrt{x} - (\sqrt{x})^2 + 3 = 0$$

$$\Rightarrow \qquad (\sqrt{x})^2 - 2\sqrt{x} - 3 = 0$$

$$\Rightarrow \qquad (\sqrt{x} - 3) (\sqrt{x} + 1) = 0 \Rightarrow \sqrt{x} = 3$$
[since,  $\sqrt{x} = -1$  is not possible]
$$\therefore \qquad y = 3$$

Hence, required area

$$= \int_0^3 (x_2 - x_1) dy = \int_0^3 \{(2y + 3) - y^2\} dy$$
$$= \left[ y^2 + 3y - \frac{y^3}{3} \right]_0^3 = 9 + 9 - 9 = 9 \text{ sq units}$$

**21.** 
$$R_1 = \int_{-1}^{2} x f(x) dx$$
 ...(i)

Using 
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

$$R_{1} = \int_{-1}^{2} (1-x) f(1-x) dx$$

$$\therefore R_{1} = \int_{-1}^{2} (1-x) f(x) dx \qquad ...(ii)$$

$$[f(x) = f(1-x), \text{ given}]$$

Given,  $R_2$  is area bounded by f(x), x = -1 and x = 2.

$$\therefore \qquad \qquad R_2 = \int_{-1}^2 f(x) \ dx \qquad \qquad \dots \text{(iii)}$$

On adding Eqs. (i) and (ii), we get  $2R_1 = \int_{-1}^{2} f(x) dx$ 

$$2R_1 = \int_{-1}^{2} f(x) dx$$
 ...(iv)

From Eqs. (iii) and (iv), we get  $2R_1=R_2$ 

**22.** Here, area between 0 to b is  $R_1$  and b to 1 is  $R_2$ .

$$\therefore \int_0^b (1-x)^2 dx - \int_b^1 (1-x)^2 dx = \frac{1}{4}$$

$$\Rightarrow \left[ \frac{(1-x)^3}{-3} \right]_0^b - \left[ \frac{(1-x)^3}{-3} \right]_b^1 = \frac{1}{4}$$

$$\Rightarrow -\frac{1}{3} [(1-b)^3 - 1] + \frac{1}{3} [0 - (1-b)^3] = \frac{1}{4}$$

$$\Rightarrow -\frac{2}{3} (1-b)^3 = -\frac{1}{3} + \frac{1}{4} = -\frac{1}{12} \Rightarrow (1-b)^3 = \frac{1}{8}$$

$$\Rightarrow (1-b) = \frac{1}{2} \Rightarrow b = \frac{1}{2}$$

**23.** Required area = 
$$\int_0^{\pi/4} \left( \sqrt{\frac{1+\sin x}{\cos x}} - \sqrt{\frac{1-\sin x}{\cos x}} \right) dx$$

$$\left[ \because \frac{1 + \sin x}{\cos x} > \frac{1 - \sin x}{\cos x} > 0 \right]$$

$$= \int_{0}^{\pi/4} \left[ \frac{1 + \frac{2 \tan \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}}{\frac{1 - \tan^{2} \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}} - \frac{1 - \frac{2 \tan \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}}{\frac{1 - \tan^{2} \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}}} \right] dx$$

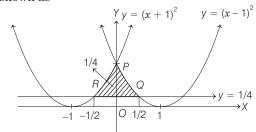
$$= \int_0^{\pi/4} \left( \sqrt{\frac{1 + \tan\frac{x}{2}}{1 - \tan\frac{x}{2}}} - \sqrt{\frac{1 - \tan\frac{x}{2}}{1 + \tan\frac{x}{2}}} \right) dx$$

$$= \int_0^{\pi/4} \frac{1 + \tan\frac{x}{2} - 1 + \tan\frac{x}{2}}{\sqrt{1 - \tan^2\frac{x}{2}}} dx = \int_0^{\pi/4} \frac{2 \tan\frac{x}{2}}{\sqrt{1 - \tan^2\frac{x}{2}}} dx$$

Put 
$$\tan \frac{x}{2} = t \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} dx = dt = \int_0^{\tan \frac{\pi}{8}} \frac{4t \ dt}{(1+t^2)\sqrt{1-t^2}}$$

As 
$$\int_0^{\sqrt{2}-1} \frac{4t \, dt}{(1+t^2)\sqrt{1-t^2}} \qquad [\because \tan\frac{\pi}{8} = \sqrt{2} - 1]$$

**24.** The curves 
$$y = (x-1)^2$$
,  $y = (x+1)^2$  and  $y = 1/4$  are shown as



where, points of intersection are

$$(x-1)^2 = \frac{1}{4} \implies x = \frac{1}{2} \text{ and } (x+1)^2 = \frac{1}{4} \implies x = -\frac{1}{2}$$

$$Q\left(\frac{1}{2}, \frac{1}{4}\right) \text{ and } R\left(-\frac{1}{2}, \frac{1}{4}\right)$$

$$\therefore \text{ Required area} = 2 \int_0^{1/2} \left[ (x-1)^2 - \frac{1}{4} \right] dx$$

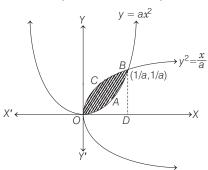
$$= 2 \left[ \frac{(x-1)^3}{3} - \frac{1}{4} x \right]_0^{1/2}$$

$$= 2 \left[ -\frac{1}{8 \cdot 3} - \frac{1}{8} - \left( -\frac{1}{3} - 0 \right) \right] = \frac{8}{24} = \frac{1}{3} \text{ sq unit}$$

## **25.** As from the figure, area enclosed between the curves is OABCO.

Thus, the point of intersection of

$$y = ax^2$$
 and  $x = ay^2$ 



$$\Rightarrow \qquad x = a \ (ax^2)^2$$

$$\Rightarrow \qquad x = 0, \frac{1}{a} \Rightarrow y = 0, \frac{1}{a}$$

So, the points of intersection are (0, 0) and  $\left(\frac{1}{a}, \frac{1}{a}\right)$ 

 $\therefore$  Required area OABCO = Area of curve OCBDO

-Area of curve *OABDO* 

$$\Rightarrow \int_0^{1/a} \left( \sqrt{\frac{x}{a}} - ax^2 \right) dx = 1$$
 [given]

$$\Rightarrow \left[\frac{1}{\sqrt{a}} \cdot \frac{x^{3/2}}{3/2} - \frac{ax^3}{3}\right]_0^{1/a} = 1$$

$$\Rightarrow \frac{2}{3a^2} - \frac{1}{3a^2} = 1$$

$$\Rightarrow \qquad a^2 = \frac{1}{3} \Rightarrow a = \frac{1}{\sqrt{3}} \quad [\because a > 0]$$

**26.** Since, 
$$\int_{1}^{b} f(x) dx = (b-1) \sin(3b+4)$$

On differentiating both sides w.r.t.  $\boldsymbol{b},$  we get

$$f(b) = 3(b-1) \cdot \cos(3b+4) + \sin(3b+4)$$

$$\therefore f(x) = \sin (3x + 4) + 3(x - 1) \cos (3x + 4)$$

**27.** Given, 
$$\frac{dy}{dx} = 2x + 1$$

On integrating both sides

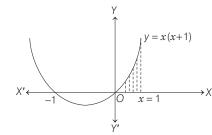
$$\int dy = \int (2x+1) \, dx$$

$$\Rightarrow \qquad y = x^2 + x + C \text{ which passes through } (1,2)$$

$$\therefore$$
 2 = 1 + 1 + C

$$\Rightarrow$$
  $C = 0$ 

$$\therefore \qquad \qquad y = x^2 + x$$

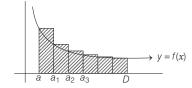


Thus, the required area bounded by X-axis, the curve

$$= \int_0^1 (x^2 + x) dx = \left[ \frac{x^3}{3} + \frac{x^2}{2} \right]_0^1$$
$$= \frac{1}{3} + \frac{1}{2} = \frac{5}{6} \text{ sq unit}$$

**28.** 
$$\int_{0}^{1} (x - x^{3}) dx = 2 \int_{0}^{\alpha} (x - x^{3}) dx$$
$$\frac{1}{4} = 2 \left( \frac{\alpha^{2}}{2} - \frac{\alpha^{4}}{4} \right)$$
$$2\alpha^{4} - 4\alpha^{2} + 1 = 0$$
$$\Rightarrow \qquad \alpha^{2} = \frac{4 - \sqrt{16 - 8}}{4} \qquad (\because \alpha \in (0, 1))$$
$$\alpha^{2} = 1 - \frac{1}{\sqrt{2}}$$

**29. PLAN** (i) Area of region f(x) bounded between x = a to x = b is



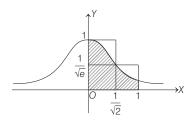
 $\int_{0}^{b} f(x) dx =$ Sum of areas of rectangle shown in shaded part.

(ii) If  $f(x) \ge g(x)$  when defined in [a,b], then

$$\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

**Description of Situation** As the given curve  $y=e^{-x^2}$ cannot be integrated, thus we have to bound this function by using above mentioned concept.

Graph for  $y = e^{-x^2}$ 



Since, 
$$x^2 \le x$$
 when  $x \in [0, 1]$   
 $\Rightarrow -x^2 \ge -x$  or  $e^{-x^2} \ge e^{-x}$ 

$$\Rightarrow -x^2 \ge -x \text{ or } e^{-x^2} \ge e^{-x^2}$$

$$\therefore \qquad \int_0^1 e^{-x^2} dx \ge \int_0^1 e^{-x} dx$$

$$\Rightarrow$$
  $S \ge -(e^{-x})_0^1 = 1 - \frac{1}{e}$  ...(i)

Also,  $\int_0^1 e^{-x^2} dx \le \text{Area of two rectangles}$ 

$$\leq \left(1 \times \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) \times \frac{1}{\sqrt{e}}$$

$$\leq \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}}\left(1 - \frac{1}{\sqrt{2}}\right) \qquad ...(ii)$$

$$\therefore \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left( 1 - \frac{1}{\sqrt{2}} \right) \ge S \ge 1 - \frac{1}{e} \quad \text{[from Eqs. (i) and (ii)]}$$

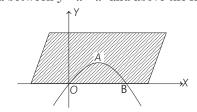
**30.** Shaded area =  $e - \left( \int_0^1 e^x dx \right) = 1$ 

Also, 
$$\int_{1}^{e} \ln (e+1-y) dy$$
 [put  $e+1-y=t \Rightarrow -dy=dt$ ]  
=  $\int_{e}^{1} \ln t (-dt) = \int_{1}^{e} \ln t dt = \int_{1}^{e} \ln y dy = 1$ 

**31.** *Case* **I** When m = 0

In this case, 
$$y = x - x^2$$
 ...(i)  
and  $y = 0$  ...(ii)

are two given curves, y > 0 is total region above *X*-axis. Therefore, area between  $y = x - x^2$  and y = 0is area between  $y = x - x^2$  and above the *X*-axis



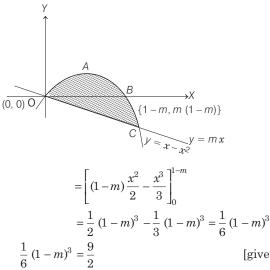
$$\therefore A = \int_0^1 (x - x^2) dx = \left[ \frac{x^2}{2} - \frac{x^3}{3} \right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \neq \frac{9}{2}$$

Hence, no solution exists.

#### Case II When m < 0

In this case, area between  $y = x - x^2$  and y = mx is OABCO and points of intersection are (0,0) and  $\{1-m, m(1-m)\}.$ 

$$\therefore$$
 Area of curve  $OABCO = \int_{0}^{1-m} [x - x^2 - mx] dx$ 



$$= \frac{1}{2} (1 - m)^{3} - \frac{1}{3} (1 - m)^{3} = \frac{1}{6} (1 - m)^{3}$$

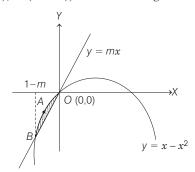
$$\therefore \frac{1}{6} (1 - m)^{3} = \frac{9}{2}$$
 [given]
$$\Rightarrow (1 - m)^{3} = 27$$

$$\Rightarrow 1 - m = 3$$

$$\Rightarrow m = -2$$

#### Case III When m > 0

In this case, y = mx and  $y = x - x^2$  intersect in (0,0) and  $\{(1-m), m(1-m)\}$  as shown in figure



 $\therefore$  Area of shaded region =  $\int_{1-m}^{0} (x - x^2 - mx) dx$ 

$$= \left[ (1-m)\frac{x^2}{2} - \frac{x^3}{3} \right]_{1-m}^0$$

$$= -\frac{1}{2} (1-m) (1-m)^2 + \frac{1}{3} (1-m)^3$$

$$= -\frac{1}{6} (1-m)^3$$
9

$$\Rightarrow \frac{9}{2} = -\frac{1}{6} (1 - m)^3$$
 [given]

$$\Rightarrow \qquad (1-m)^3 = -27$$

$$\Rightarrow$$
  $(1-m)=-3$ 

$$\Rightarrow$$
  $m=3+1=4$ 

Therefore, (b) and (d) are the answers.

**32.** Given, 
$$\begin{bmatrix} 4a^2 & 4a & 1 \\ 4b^2 & 4b & 1 \\ 4c^2 & 4c & 1 \end{bmatrix} \begin{bmatrix} f(-1) \\ f(1) \\ f(2) \end{bmatrix} = \begin{bmatrix} 3a^2 + 3a \\ 3b^2 + 3b \\ 3c^2 + 3c \end{bmatrix}$$

$$\Rightarrow$$
  $4a^2 f(-1) + 4a f (1) + f (2) = 3a^2 + 3a, ...(i)$ 

$$4b^2 f(-1) + 4b f(1) + f(2) = 3b^2 + 3b$$
 ...(ii)

and 
$$4c^2 f(-1) + 4cf(1) + f(2) = 3c^2 + 3c$$
 ...(iii)

where, f(x) is quadratic expression given by,

$$f(x) = ax^2 + bx + c$$
 and Eqs. (i), (ii) and (iii).

$$\Rightarrow$$
  $4x^2 f(-1) + 4x f(1) + f(2) = 3x^2 + 3x$ 

or 
$$\{4 f(-1) - 3\} x^2 + \{4f(1) - 3\} x + f(2) = 0$$
 ...(iv)

As above equation has 3 roots a, b and c.

So, above equation is identity in x.

i.e. coefficients must be zero.

$$\Rightarrow f(-1) = 3/4, f(1) = 3/4, f(2) = 0 \qquad ...(v)$$

$$\therefore f(x) = ax^2 + bx + c$$

$$\therefore$$
  $a = -1/4, b = 0$  and  $c = 1$ , using Eq. (v)

$$\therefore \quad a = -1/4, b = 0 \quad \text{and} \quad c = 1, \text{ using Eq. (v)}$$
Thus, 
$$f(x) = \frac{4 - x^2}{4} \text{ shown as,}$$

Let 
$$A(-2,0), B = (2t, -t^2 + 1)$$

Since, AB subtends right angle at vertex V (0, 1).

$$\Rightarrow \frac{1}{2} \cdot \frac{-t^2}{2t} = -1$$

$$\Rightarrow \qquad t = 4$$

$$\therefore \qquad B (8, -15)$$

So, equation of chord *AB* is  $y = \frac{-(3x+6)}{2}$ 

$$\therefore \text{ Required area} = \left| \int_{-2}^{8} \left( \frac{4 - x^2}{4} + \frac{3x + 6}{2} \right) dx \right|$$

$$= \left| \left( x - \frac{x^3}{12} + \frac{3x^2}{4} + 3x \right)_{-2}^{8} \right|$$

$$= \left| \left[ 8 - \frac{128}{3} + 48 + 24 - \left( -2 + \frac{2}{3} + 3 - 6 \right) \right] \right|$$

$$= \frac{125}{3} \text{ sq units}$$

#### **33.** The region bounded by the curves $y = x^2$ , $y = -x^2$ and $y^2 = 4 x - 3$ is symmetrical about *X*-axis, where y = 4x - 3meets at (1, 1).

 $\therefore$  Area of curve (OABCO)

$$=2\left[\int_{0}^{1} x^{2} dx - \int_{3/4}^{1} (\sqrt{4x-3}) dx\right]$$

$$y = x^{2} \qquad Y$$

$$(1,1)A$$

$$X'$$

$$y = -x^{2} \qquad Y$$

$$y = -x^{2} \qquad Y$$

$$= 2\left[\left(\frac{x^{3}}{3}\right)_{0}^{1} - \left(\frac{(4x-3)^{3/2}}{3 \cdot 4/2}\right)_{3/4}^{1}\right]$$

$$= 2\left(\frac{1}{3} - \frac{1}{6}\right)$$

 $=1\cdot\frac{1}{6}=\frac{1}{3}$  sq unit

$$\frac{dy}{dx} = \frac{(x+1)^2 + y - 3}{(x+1)}$$

$$\Rightarrow \frac{dy}{dx} = (x+1) + \frac{(y-3)}{(x+1)}$$

Put 
$$x + 1 = X$$
 and  $y - 3 = Y$ 

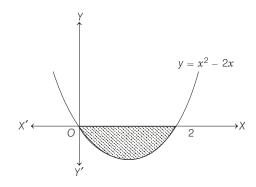
$$\Rightarrow \frac{dy}{dx} = \frac{dY}{dX}$$

$$\therefore \frac{dY}{dX} = X + \frac{Y}{X}$$

$$\Rightarrow \frac{dY}{dX} - \frac{1}{X}Y = X$$

$$\text{IF } = e^{\int -\frac{1}{X}dX} = e^{-\log X} = \frac{1}{X}$$

∴ Solution is, 
$$Y \cdot \frac{1}{X} = \int X \cdot \frac{1}{X} dX + c$$
  
⇒  $\frac{Y}{X} = X + c$ 



$$y-3 = (x+1)^2 + c(x+1)$$
, which passes through (2, 0).  
⇒  $-3 = (3)^2 + 3c$ 

$$\Rightarrow$$
  $c$ 

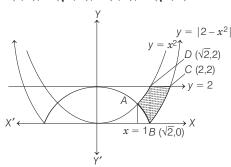
$$y = (x+1)^2 - 4(x+1) + 3$$

$$\Rightarrow \qquad y = x^2 - 2x$$

$$\therefore \text{ Required area} = \left| \int_0^2 (x^2 - 2x) dx \right| = \left| \left( \frac{x^3}{3} - x^2 \right)_0^2 \right|$$
$$= \frac{8}{3} - 4 = \frac{4}{3} \text{ sq units}$$

#### **35.** The points in the graph are

$$A(1,1), B(\sqrt{2},0), C(2,2), D(\sqrt{2},2)$$



#### :. Required area

$$= \int_{1}^{\sqrt{2}} \{x^{2} - (2 - x^{2})\} dx + \int_{\sqrt{2}}^{2} \{2 - (x^{2} - 2)\} dx$$

$$= \int_{1}^{\sqrt{2}} (2x^{2} - 2) dx + \int_{\sqrt{2}}^{2} (4 - x^{2}) dx$$

$$= \left[\frac{2x^{3}}{3} - 2x\right]_{1}^{\sqrt{2}} + \left[4x - \frac{x^{3}}{3}\right]_{\sqrt{2}}^{2}$$

$$= \left[\frac{4\sqrt{2}}{3} - 2\sqrt{2} - \frac{2}{3} + 2\right] + \left[8 - \frac{8}{3} - 4\sqrt{2} + \frac{2\sqrt{2}}{3}\right]$$

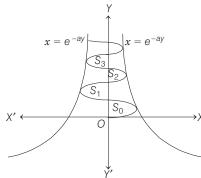
$$= \left(\frac{20 - 12\sqrt{2}}{3}\right) \text{ sq units}$$

**36.** Given, 
$$x = (\sin by) e^{-ay}$$

Now, 
$$-1 \le \sin by \le 1$$

$$\Rightarrow -e^{-ay} \le e^{-ay} \sin by \le e^{-ay}$$

$$\Rightarrow -e^{-ay} \le x \le e^{-ay}$$



In this case, if we take a and b positive, the values  $-e^{-ay}$ and  $e^{-ay}$  become left bond and right bond of the curve and due to oscillating nature of sin by, it will oscillate

between 
$$x = e^{-ay}$$
 and  $x = -e^{-ay}$   
Now,  $S_j = \int_{j\pi/b}^{(j+1)\pi/b} \sin by \cdot e^{-ay} dy$ 

$$\begin{bmatrix} \text{since, } I = \int \sin by \cdot e^{-ay} dy \\ I = \frac{-e^{-ay}}{a^2 + b^2} \quad (a \sin by + b \cos by) \end{bmatrix}$$

$$\therefore S_j = \left| \frac{-1}{2 + 12} \right| e^{\frac{-a(j+1)\pi}{b}}$$

$$\{a\sin(j+1)\pi+b\cos(j+1)\pi\}$$

$$-\frac{e^{\frac{-aj\pi}{b}}}{(a\sin j\pi + b\cos j\pi)}$$

$$S_{j} = \left[ -\frac{1}{a^{2} + b^{2}} \left[ e^{-\frac{a(j+1)\pi}{b}} \left\{ 0 + b(-1)^{j+1} \right\} - e^{-aj\pi/b} \left\{ 0 + b(-1)^{j} \right\} \right]$$

$$= \left| \frac{b (-1)^{j} e^{-\frac{a}{b} j\pi}}{a^{2} + b^{2}} \left( e^{-\frac{a}{b} \pi} + 1 \right) \right|$$

$$[\cdots (-1)^{j+2} = (-1)^2 (-1)^j = (-1)^j]$$

$$[\because (-1)^{j+2} = (-1)^2 (-1)^j = (-1)^j]$$

$$= \frac{b e^{-\frac{a}{b}j\pi}}{a^2 + b^2} \left( e^{-\frac{a}{b}\pi} + 1 \right)$$

$$be^{-\frac{a}{b}j\pi}\left(e^{\frac{-a\pi}{b}}+1\right)$$

$$\therefore \frac{S_{j}}{S_{j-1}} = \frac{be^{\frac{-a}{b}j\pi} \left(e^{\frac{-a\pi}{b}} + 1\right)}{e^{\frac{-a}{b}(j-1)\pi} \left(e^{\frac{-a\pi}{b}} + 1\right)} = \frac{e^{\frac{-a}{b}j\pi}}{e^{\frac{-a}{b}(j-1)\pi}}$$

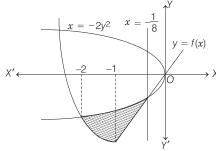
$$=e^{-\frac{a}{b}\pi}$$
 = constant

$$\Rightarrow S_0, S_1, S_2, \dots, S_j$$
 form a GP.

For a = -1 and  $b = \pi$ 

$$\begin{split} S_j &= \frac{\pi \cdot e^{\frac{1}{\pi} \cdot \pi j}}{(1 + \pi^{2)}} \left( e^{\frac{1}{\pi} \cdot \pi} + 1 \right) = \frac{\pi \cdot e^j}{(1 + \pi^{2)}} \left( 1 + e \right) \\ \Rightarrow \qquad \sum_{j=0}^n S_j &= \frac{\pi \cdot (1 + e)}{(1 + \pi)^2} \sum_{j=0}^n e^j = \frac{\pi (1 + e)}{(1 + \pi^2)} \left( e^0 + e^1 + \ldots + e^n \right) \\ &= \frac{\pi (1 + e)}{(1 + \pi^2)} \cdot \frac{(e^{n+1} - 1)}{e - 1} \end{split}$$

**37.** Given, 
$$f(x) = \begin{cases} 2x, & |x| \le 1\\ x^2 + ax + b, |x| > 1 \end{cases}$$



$$\Rightarrow f(x) = \begin{cases} x^2 + ax + b, & \text{if } x < -1\\ 2x, & \text{if } -1 \le x < 1\\ x^2 + ax + b, & \text{if } x \ge 1 \end{cases}$$

f is continuous on R, so f is continuous at -1 and 1.

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} f(x) = f(-1)$$

and 
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

$$\Rightarrow 1-a+b=-2 \text{ and } 2=1+a+b$$

$$\Rightarrow$$
  $a-b=3$  and  $a+b=1$ 

$$x^2 + 2x - 1$$
 if

Hence, 
$$f(x) = \begin{cases} x^2 + 2x - 1, & \text{if } x < -1 \\ 2x, & \text{if } -1 \le x < 1 \\ x^2 + 2x - 1, & \text{if } x \ge 1 \end{cases}$$

Next, we have to find the points  $x = -2y^2$  and y = f(x). The point of intersection is (-2, -1).

$$\therefore \quad \text{Required area} = \int_{-2}^{-1/8} \left[ \sqrt{\frac{-x}{2}} - f(x) \right] dx \\
= \int_{-2}^{-1/8} \sqrt{\frac{-x}{2}} dx - \int_{-2}^{-1} (x^2 + 2x - 1) dx - \int_{-1}^{-1/8} 2x dx \\
= -\frac{2}{3\sqrt{2}} \left[ (-x)^{3/2} \right]_{-2}^{-1/8} - \left[ \left( \frac{x^3}{3} + x^2 - x \right) \right]_{-2}^{-1} - \left[ x^2 \right]_{-1}^{-1/8} \\
= -\frac{2}{3\sqrt{2}} \left[ \left( \frac{1}{8} \right)^{3/2} - 2^{3/2} \right] - \left( -\frac{1}{3} + 1 + 1 \right) \\
+ \left( -\frac{8}{3} + 4 + 2 \right) - \left[ \frac{1}{64} - 1 \right] \\
= \frac{\sqrt{2}}{3} \left[ 2\sqrt{2} - 2^{-9/2} \right] + \frac{5}{3} + \frac{63}{64} \\
= \frac{63}{16 \times 3} + \frac{509}{64 \times 3} = \frac{761}{192} \text{ sq units}$$

38. Refer to the figure given in the question. Let the coordinates of *P* be  $(x, x^2)$ , where  $0 \le x \le 1$ .

For the area (OPRO),

Upper boundary:  $y = x^2$  and

lower boundary: y = f(x)

Lower limit of x:0

Upper limit of x:x

$$\therefore \text{ Area } (OPRO) = \int_0^x t^2 dt - \int_0^x f(t) dt$$

$$= \left[\frac{t^3}{3}\right]_0^x - \int_0^x f(t) dt$$

$$=\frac{x^3}{3}-\int_0^x f(t) dt$$

For the area (OPQO),

The upper curve :  $x = \sqrt{y}$ 

and the lower curve : x = y/2

Lower limit of y:0

and upper limit of  $y: x^2$ 

$$\therefore \text{ Area } (OPQO) = \int_0^{x^2} \sqrt{t} \ dt - \int_0^{x^2} \frac{t}{2} \ dt$$
$$= \frac{2}{3} \left[ t^{3/2} \right]_0^{x^2} - \frac{1}{4} \left[ t^2 \right]_0^{x^2}$$

$$=\frac{2}{3}x^3-\frac{x^4}{4}$$

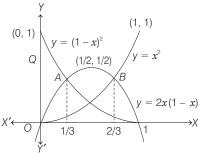
According to the given condition, 
$$\frac{x^3}{3} - \int_0^x f(t) dt = \frac{2}{3} x^3 - \frac{x^4}{4}$$

On differentiating both sides w.r.t. x, we get

$$x^{2} - f(x) \cdot 1 = 2x^{2} - x^{3}$$
$$f(x) = x^{3} - x^{2}, 0 \le x \le 1$$

$$\Rightarrow f(x) = x^{2} - x^{2}, 0 \le x \le 1$$
We can draw the graph of  $x = x^{2}$ 

**39.** We can draw the graph of  $y = x^2$ ,  $y = (1 - x^2)$  and y = 2x(1 - x) in following figure



Now, to get the point of intersection of  $y = x^2$  and y = 2x (1 - x), we get

$$x^{2} = 2x (1 - x)$$

$$\Rightarrow 3x^{2} = 2x$$

$$\Rightarrow x (3x - 2) = 0$$

$$\Rightarrow x = 0, 2/3$$

Similarly, we can find the coordinate of the points of intersection of

$$y = (1 - x^2)$$
 and  $y = 2x (1 - x)$  are  $x = 1/3$  and  $x = 1$ 

From the figure, it is clear that,

$$f(x) = \begin{cases} (1-x)^2, & \text{if } 0 \le x \le 1/3\\ 2x(1-x), & \text{if } 1/3 \le x \le 2/3\\ x^2, & \text{if } 2/3 \le x \le 1 \end{cases}$$

:. The required area

$$A = \int_{0}^{1/3} f(x) dx$$

$$= \int_{0}^{1/3} (1 - x)^{2} dx + \int_{1/3}^{2/3} 2x (1 - x) dx + \int_{2/3}^{1} x^{2} dx$$

$$= \left[ -\frac{1}{3} (1 - x)^{3} \right]_{0}^{1/3} + \left[ x^{2} - \frac{2x^{3}}{3} \right]_{1/3}^{2/3} + \left[ \frac{1}{3} x^{3} \right]_{2/3}^{1}$$

$$= \left[ -\frac{1}{3} \left( \frac{2}{3} \right)^{3} + \frac{1}{3} \right] + \left[ \left( \frac{2}{3} \right)^{2} - \frac{2}{3} \left( \frac{2}{3} \right)^{3} - \left( \frac{1}{3} \right)^{2} + \frac{2}{3} \left( \frac{1}{3} \right)^{3} \right]$$

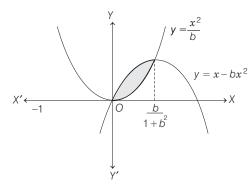
$$+ \left[ \frac{1}{3} (1) - \frac{1}{3} \left( \frac{2}{3} \right)^{3} \right]$$

$$19 + 13 + 19 + 17$$

$$= \frac{19}{81} + \frac{13}{81} + \frac{19}{81} = \frac{17}{27}$$
 sq unit

**40.** Eliminating y from  $y = \frac{x^2}{b}$  and  $y = x - bx^2$ , we get

$$x^2 = bx - b^2x^2$$
$$x = 0, \frac{b}{1+b^2}$$



Thus, the area enclosed between the parabolas

$$A = \int_0^{b/(1+b)^2} \left( x - bx^2 - \frac{x^2}{b} \right) dx$$
$$= \left[ \frac{x^2}{2} - \frac{x^3}{3} \cdot \frac{1+b^2}{b} \right]_0^{b/(1+b)^2} = \frac{1}{6} \cdot \frac{b^2}{(1+b^2)^2}$$

On differentiating w.r.t. b, we get

adding w.r.t. b, we get
$$\frac{dA}{db} = \frac{1}{6} \cdot \frac{(1+b^2)^2 \cdot 2b - 2b^2 \cdot (1+b^2) \cdot 2b}{(1+b^2)^4}$$

$$= \frac{1}{3} \cdot \frac{b(1-b^2)}{(1+b^2)^3}$$

For maximum value of A, put  $\frac{dA}{dt} = 0$ 

$$\Rightarrow$$
  $b = -1, 0, 1, \text{ since } b > 0$ 

 $\therefore$  We consider only b = 1.

Sign scheme for  $\frac{dA}{db}$  around b = 1 is as shown below:

$$\xrightarrow{-}$$
  $\xrightarrow{+}$   $\xrightarrow{-}$   $\infty$ 

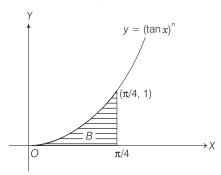
From sign scheme, it is clear that A is maximum at

**41.** We have,  $A_n = \int_0^{\pi/4} (\tan x)^n dx$ 

Since,  $0 < \tan x < 1$ , when  $0 < x < \pi/4$ We have,  $0 < (\tan x)^{n+1} < (\tan x)^n$  for each  $n \in N$   $\Rightarrow \int_0^{\pi/4} (\tan x)^{n+1} dx < \int_0^{\pi/4} (\tan x)^n dx$ 

 $\Rightarrow \quad A_{n+1} < A_n$  Now, for n > 2

$$A_n + A_{n+2} = \int_0^{\pi/4} \left[ (\tan x)^n + (\tan x)^{n+2} \right] dx$$
$$= \int_0^{\pi/4} (\tan x)^n (1 + \tan^2 x) dx$$



$$= \int_0^{\pi/4} (\tan x)^n \sec^2 x \, dx$$
$$= \left[ \frac{1}{(n+1)} (\tan x)^{n+1} \right]_0^{\pi/4}$$
$$= \frac{1}{(n+1)} (1-0) = \frac{1}{n+1}$$

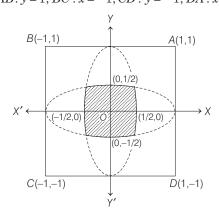
$$\begin{split} &A_{n+2} < A_{n+1} < A_n, \\ &A_n + A_{n+2} < 2 \ A_n \\ &\frac{1}{n+1} < 2A_n \end{split}$$
Since, then  $\frac{1}{2n+2} < A_n$ ...(i)

Also, for n > 2  $A_n + A_n < A_n + A_{n-2} = \frac{1}{n-1}$ 

$$\Rightarrow \qquad 2A_n < \frac{1}{n-1}$$
 
$$\Rightarrow \qquad A_n < \frac{1}{2n-2} \qquad ...(ii)$$

From Eqs. (i) and (ii), 
$$\frac{1}{2n+2} < A_n < \frac{1}{2n-2}$$

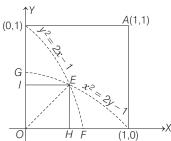
**42.** The equations of the sides of the square are as follow: AB: y = 1, BC: x = -1, CD: y = -1, DA: x = 1



Let the region be S and (x, y) is any point inside it. Then, according to given conditions,

when, according to given conditions, 
$$\sqrt{x^2+y^2} < |1-x|, |1+x|, |1-y|, |1+y|$$
 
$$\Rightarrow \quad x^2+y^2 < (1-x)^2, (1+x)^2, (1-y)^2, (1+y)^2$$
 
$$\Rightarrow \quad x^2+y^2 < x^2-2x+1, x^2+2x+1, \\ y^2-2y+1, y^2+2y+1$$
 
$$\Rightarrow \quad y^2 < 1-2x, y^2 < 1+2x, x^2 < 1-2y \text{ and } x^2 < 2y+1$$
 Now, in  $y^2=1-2x$  and  $y^2=1+2x$ , the first equation represents a parabola with vertex at (1/2,0) and second equation represents a parabola with vertex (-1/2, 0) and in  $x^2=1-2y$  and  $x^2=1+2y$ , the first equation represents a parabola with vertex at (0, 1/2) and second equation represents a parabola with vertex at (0, -1/2). Therefore, the region  $S$  is lying inside the four parabolas

$$y^2 = 1 - 2x$$
,  $y^2 = 1 + 2x$ ,  $x^2 = 1 + 2y$ ,  $x^2 = 1 - 2y$ 



where, S is the shaded region.

Now, S is symmetrical in all four quadrants, therefore  $S = 4 \times \text{Area}$  lying in the first quadrant.

Now,  $y^2 = 1 - 2x$  and  $x^2 = 1 - 2y$  intersect on the line y = x. The point of intersection is  $E(\sqrt{2} - 1, \sqrt{2} - 1)$ . Area of the region OEFO

= Area of 
$$\triangle OEH$$
 + Area of  $HEFH$   
=  $\frac{1}{2} (\sqrt{2} - 1)^2 + \int_{\sqrt{2} - 1}^{1/2} \sqrt{1 - 2x} dx$   
=  $\frac{1}{2} (\sqrt{2} - 1)^2 + \left[ (1 - 2x)^{3/2} \frac{2}{3} \cdot \frac{1}{2} (-1) \right]_{\sqrt{2} - 1}^{1/2}$   
=  $\frac{1}{2} (2 + 1 - 2\sqrt{2}) + \frac{1}{3} (1 + 2 - 2\sqrt{2})^{3/2}$ 

$$= \frac{1}{2} (3 - 2\sqrt{2}) + \frac{1}{3} (3 - 2\sqrt{2})^{3/2}$$

$$= \frac{1}{2} (3 - 2\sqrt{2}) + \frac{1}{3} [(\sqrt{2} - 1)^2]^{3/2}$$

$$= \frac{1}{2} (3 - 2\sqrt{2}) + \frac{1}{3} (\sqrt{2} - 1)^3$$

$$= \frac{1}{2} (3 - \sqrt{2}) + \frac{1}{3} [2\sqrt{2} - 1 - 3\sqrt{2} (\sqrt{2} - 1)]$$

$$= \frac{1}{2} (3 - 2\sqrt{2}) + \frac{1}{3} [5\sqrt{2} - 7]$$

$$= \frac{1}{6} [9 - 6\sqrt{2} + 10\sqrt{2} - 14] = \frac{1}{6} [4\sqrt{2} - 5] \text{ sq units}$$

Similarly, area  $OEGO = \frac{1}{6} (4\sqrt{2} - 5)$  sq units

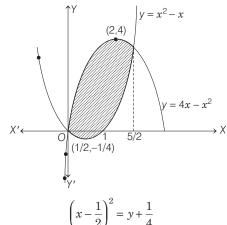
Therefore, area of S lying in first quadrant  $=\frac{2}{6}\left(4\sqrt{2}-5\right)=\frac{1}{3}\left(4\sqrt{2}-5\right)\text{ sq units}$  Hence,  $S=\frac{4}{2}\left(4\sqrt{2}-5\right)=\frac{1}{2}\left(16\sqrt{2}-20\right)$  sq units

**43.** Given parabolas are  $y = 4x - x^2$ 

and 
$$y = -(x-2)^2 + 4$$
  
or  $(x-2)^2 = -(y-4)$ 

Therefore, it is a vertically downward parabola with vertex at (2,4) and its axis is x=2

and  $y = x^2 - x \implies y = \left(x - \frac{1}{2}\right)^2 - \frac{1}{4}$ 



This is a parabola having its vertex at  $\left(\frac{1}{2}, -\frac{1}{4}\right)$ .

Its axis is at  $x = \frac{1}{2}$  and opening upwards.

The points of intersection of given curves are

$$4x - x^2 = x^2 - x \implies 2x^2 = 5x$$

$$\Rightarrow x(2 - 5x) = 0 \implies x = 0, \frac{5}{2}$$

Also,  $y = x^2 - x$  meets *X*-axis at (0,0) and (1, 0).

:. Area, 
$$A_1 = \int_0^{5/2} [(4x - x^2) - (x^2 - x)] dx$$

$$= \int_0^{5/2} (5x - 2x^2) dx$$

$$= \left[ \frac{5}{2} x^2 - \frac{2}{3} x^3 \right]_0^{5/2} = \frac{5}{2} \left( \frac{5}{2} \right)^2 - \frac{2}{3} \cdot \left( \frac{5}{2} \right)^3$$

$$= \frac{5}{2} \cdot \frac{25}{4} - \frac{2}{3} \cdot \frac{125}{8}$$

$$= \frac{125}{8} \left( 1 - \frac{2}{3} \right) = \frac{125}{24} \text{ sq units}$$

This area is considering above and below *X*-axis both. Now, for area below *X*-axis separately, we consider

$$A_2 = -\int_0^1 (x^2 - x) dx = \left[\frac{x^2}{2} - \frac{x^3}{3}\right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6} \text{ sq units}$$

Therefore, net area above the X-axis is

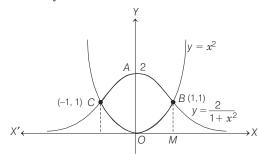
$$A_1 - A_2 = \frac{125 - 4}{24} = \frac{121}{24}$$
 sq units

Hence, ratio of area above the X-axis and area below X-axis

$$=\frac{121}{24}:\frac{1}{6}=121:4$$

**44.** The curve  $y = x^2$  is a parabola. It is symmetric about *Y*-axis and has its vertex at (0,0) and the curve  $y = \frac{2}{1+x^2}$  is a bell shaped curve. *X*-axis is its asymptote

and it is symmetric about Y-axis and its vertex is (0, 2).



Since,  $y = x^2$  ...(i) and  $y = \frac{2}{x^2}$  ...(ii)

$$\Rightarrow \qquad \qquad y = \frac{2}{1+y}$$

$$\Rightarrow \qquad y^2 + y - 2 = 0$$

$$\Rightarrow \qquad (y-1)(y+2) = 0 \Rightarrow y = -2, 1$$

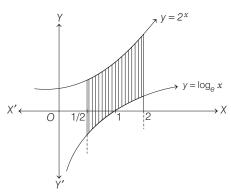
But 
$$y \ge 0$$
, so  $y = 1 \implies x = \pm 1$ 

Therefore, coordinates of C are (-1, 1) and coordinates of B are (1,1).

 $\therefore$  Required area  $OBACO = 2 \times Area$  of curve OBAO

$$= 2 \left[ \int_0^1 \frac{2}{1+x^2} dx - \int_0^1 x^2 dx \right]$$
$$= 2 \left[ \left[ 2 \tan^{-1} x \right]_0^1 - \left[ \frac{x^3}{3} \right]_0^1 \right] = 2 \left[ \frac{2\pi}{4} - \frac{1}{3} \right] = \left( \pi - \frac{2}{3} \right)$$
sq unit

**45.** The required area is the shaded portion in following figure



:. The required area

$$= \int_{1/2}^{2} (2^{x} - \log x) \, dx = \left( \frac{2^{x}}{\log 2} - (x \log x - x) \right)_{1/2}^{2}$$
$$= \left( \frac{4 - \sqrt{2}}{\log 2} - \frac{5}{2} \log 2 + \frac{3}{2} \right)$$
sq units

**46.** Both the curves are defined for x > 0.

Both are positive when x > 1 and negative when 0 < x < 1. We know that,  $\lim_{x \to \infty} (\log x) \to -\infty$ 

Hence,  $\lim_{x\to 0^+} \frac{\log x}{ex} \to -\infty$ . Thus, *Y*-axis is asymptote of second curve.

And 
$$\lim_{x \to 0^{+}} ex \log x$$
 [(0)  $\times \infty$  form]
$$= \lim_{x \to 0^{+}} \frac{e \log x}{1/x}$$
 [ $-\frac{\infty}{\infty}$  form]
$$= \lim_{x \to 0^{+}} \frac{e(\frac{1}{x})}{(-\frac{1}{x^{2}})} = 0$$
 [using L'Hospital's rule]

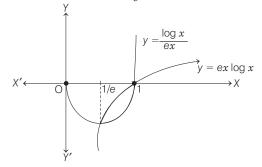
Thus, the first curve starts from (0, 0) but does not include (0, 0).

Now, the given curves intersect, therefore

$$ex \log x = \frac{\log x}{ex}$$

i.e. 
$$(e^2x^2 - 1) \log x = 0$$
  

$$\Rightarrow \qquad x = 1, \frac{1}{e} \qquad [\because x > 0]$$

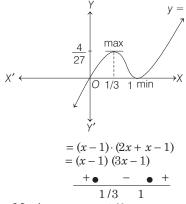


$$\therefore \text{ The required area}$$

$$= \int_{1/e}^{1} \left( \frac{(\log x)}{ex} - ex \log x \right) dx$$

$$= \frac{1}{e} \left[ \frac{(\log x)^2}{2} \right]_{1/e}^{1} - e \left[ \frac{x^2}{4} \left( 2 \log x - 1 \right) \right]_{1/e}^{1} = \left( \frac{e^2 - 5}{4e} \right) \text{ sq units}$$

**47.** Given, 
$$y = x (x - 1)^2$$
  
 $\Rightarrow \frac{dy}{dx} = x \cdot 2 (x - 1) + (x - 1)^2$ 



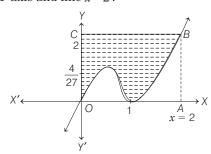
Maximum at x = 1/3

$$y_{\text{max}} = \frac{1}{3} \left( -\frac{2}{3} \right)^2 = \frac{4}{27}$$

Minimum at x = 1

$$y_{\min} = 0$$

Now, to find the area bounded by the curve  $y = x(x-1)^2$ , the *Y*-axis and line x = 2.

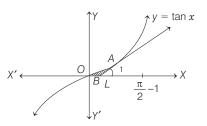


 $\therefore$  Required area = Area of square  $OABC - \int_{0}^{2} y \, dx$  $=2\times2-\int_{0}^{2}x(x-1)^{2}dx$  $= 4 - \left| \left[ \frac{x(x-1)^3}{3} \right]_0^2 - \frac{1}{3} \int_0^2 (x-1)^3 \cdot 1 \, dx \right|$  $=4-\left[\frac{x}{3}(x-1)^3-\frac{(x-1)^4}{12}\right]^2$  $=4-\left[\frac{2}{3}-\frac{1}{12}+\frac{1}{12}\right]=\frac{10}{3}$  sq units

**48.** Given, 
$$y = \tan x \implies \frac{dy}{dx} = \sec^2 x$$

$$\therefore \left(\frac{dy}{dx}\right)_{x = \frac{\pi}{4}} = 2$$

Hence, equation of tangent at  $A\left(\frac{\pi}{4},1\right)$  is  $\frac{y-1}{y-\pi/4} = 2$   $\Rightarrow$   $y-1 = 2x - \frac{\pi}{2}$ 



$$\Rightarrow \qquad (2x - y) = \left(\frac{\pi}{2} - 1\right)$$

.. Required area is OABO  $= \int_{0}^{\pi/4} (\tan x) dx - \text{area of } \Delta ALB$  $=[\log|\sec x|]_0^{\pi/4}-\frac{1}{2}\!\cdot\!BL\!\cdot\!AL$  $= \log \sqrt{2} - \frac{1}{2} \left( \frac{\pi}{4} - \frac{\pi - 2}{4} \right) \cdot 1$  $=\left(\log\sqrt{2}-\frac{1}{4}\right)$  sq unit

**49.** Given curves,  $x^2 + y^2 = 25$ ,  $4y = |4 - x^2|$  could be sketched as below, whose points of intersection are

$$x^{2} + \frac{(4 - x^{2})^{2}}{16} = 25$$

$$4y = x^{2} - 4$$

$$x' \leftarrow -5 - 4 - 2$$

$$-5 - 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$2 + 4 - 2$$

$$3 + 4 - 2$$

$$4y = x^{2} - 4$$

$$4y = x^{2} - 4$$

$$\Rightarrow (x^{2} + 24) (x^{2} - 16) = 0$$

$$\Rightarrow x = \pm 4$$

$$\therefore \text{ Required area} = 2 \left[ \int_{0}^{4} \sqrt{25 - x^{2}} dx - \int_{0}^{2} \left( \frac{4 - x^{2}}{4} \right) dx - \int_{2}^{4} \left( \frac{x^{2} - 4}{4} \right) dx \right]$$

$$= 2 \left[ \left[ \frac{x}{2} \sqrt{25 - x^{2}} + \frac{25}{2} \sin^{-1} \left( \frac{x}{5} \right) \right]_{0}^{4} \right]$$

$$= 2\left[\left[\frac{x}{2}\sqrt{25 - x^2} + \frac{25}{2}\sin^{-1}\left(\frac{x}{5}\right)\right]_0^4 - \frac{1}{4}\left[4x - \frac{x^3}{3}\right]_0^2 - \frac{1}{4}\left[\frac{x^3}{3} - 4x\right]_2^4\right]$$

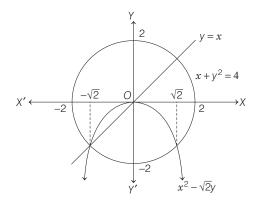
$$= 2 \left[ \left[ 6 + \frac{25}{2} \sin^{-1} \left( \frac{4}{5} \right) \right] - \frac{1}{4} \left[ 8 - \frac{8}{3} \right]$$

$$- \frac{1}{4} \left[ \left( \frac{64}{3} - 16 \right) - \left( \frac{8}{3} - 8 \right) \right] \right]$$

$$= 2 \left[ 6 + \frac{25}{2} \sin^{-1} \left( \frac{4}{5} \right) - \frac{4}{3} - \frac{4}{3} - \frac{4}{3} \right]$$

$$= \left[ 4 + 25 \sin^{-1} \left( \frac{4}{5} \right) \right] \text{ sq units}$$

**50.** Given curves are  $x^2 + y^2 = 4$ ,  $x^2 = -\sqrt{2}y$  and x = y.



Thus, the required area

$$= \left| \int_{-\sqrt{2}}^{\sqrt{2}} \sqrt{4 - x^2} \, dx \right| - \left| \int_{-\sqrt{2}}^{0} x \, dx \right| - \left| \int_{0}^{\sqrt{2}} \frac{-x^2}{\sqrt{2}} \, dx \right|$$

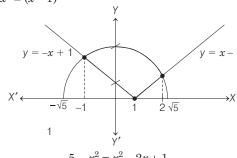
$$= 2 \int_{0}^{\sqrt{2}} \sqrt{4 - x^2} \, dx - \left| \left( \frac{x^2}{2} \right)_{-\sqrt{2}}^{0} \right| - \left| \frac{x^3}{3\sqrt{2}} \right|_{0}^{\sqrt{2}}$$

$$= 2 \left\{ \frac{x}{2} \sqrt{4 - x^2} - \frac{4}{2} \sin^{-1} \frac{x}{2} \right\}_{0}^{\sqrt{2}} - 1 - \frac{2}{3}$$

$$= (2 - \pi) - \frac{5}{3}$$

$$= \left( \frac{1}{2} - \pi \right) \text{ sq units}$$

**51.** Given curves  $y = \sqrt{5 - x^2}$  and y = |x - 1| could be sketched as shown, whose point of intersection are  $5 - x^2 = (x - 1)^2$ 



 $\Rightarrow 5 - x^2 = x^2 - 2x +$   $\Rightarrow 2x^2 - 2x - 4 = 0$ 

$$\therefore \text{ Required area}$$

$$= \int_{-1}^{2} \sqrt{5 - x^2} \, dx - \int_{-1}^{1} (-x + 1) \, dx - \int_{1}^{2} (x - 1) \, dx$$

$$= \left[ \frac{x}{2} \sqrt{5 - x^2} + \frac{5}{2} \sin^{-1} \left( \frac{x}{\sqrt{5}} \right) \right]_{-1}^{2} - \left[ \frac{-x^2}{2} + x \right]_{-1}^{1} - \left[ \frac{x^2}{2} - x \right]_{1}^{2}$$

$$= \left( 1 + \frac{5}{2} \sin^{-1} \frac{2}{\sqrt{5}} \right) - \left[ -1 + \frac{5}{2} \sin^{-1} \left( \frac{-1}{\sqrt{5}} \right) \right]$$

$$- \left( -\frac{1}{2} + 1 + \frac{1}{2} + 1 \right) - \left( 2 - 2 - \frac{1}{2} + 1 \right)$$

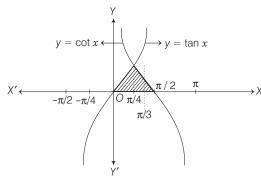
$$= \frac{5}{2} \left( \sin^{-1} \frac{2}{\sqrt{5}} + \sin^{-1} \frac{1}{\sqrt{5}} \right) - \frac{1}{2}$$

$$= \frac{5}{2} \sin^{-1} \left( \frac{2}{\sqrt{5}} \sqrt{1 - \frac{1}{5}} + \frac{1}{\sqrt{5}} \sqrt{1 - \frac{4}{5}} \right) - \frac{1}{2}$$

$$= \frac{5}{2} \sin^{-1} (1) - \frac{1}{2} = \left( \frac{5\pi}{4} - \frac{1}{2} \right) \text{ sq units}$$

**52.** Given,  $y = \begin{cases} \tan x, & -\frac{\pi}{3} \le x \le \frac{\pi}{3} \\ \cot x, & \frac{\pi}{6} \le x \le \frac{\pi}{2} \end{cases}$ 

which could be plotted as Y-axis.



$$\therefore \text{ Required area} = \int_0^{\pi/4} (\tan x) \, dx + \int_{\pi/4}^{\pi/3} (\cot x) \, dx$$

$$= [-\log |\cos x|]_0^{\pi/4} + [\log \sin x]_{\pi/4}^{\pi/3}$$

$$= -\left(\log \frac{1}{\sqrt{2}} - 0\right) + \left(\log \frac{\sqrt{3}}{2} - \log \frac{1}{\sqrt{2}}\right)$$

$$= \log \frac{\sqrt{3}}{2} - 2\log \frac{1}{\sqrt{2}}$$

$$= \log \frac{\sqrt{3}}{2} - \log \frac{1}{2} = \left(\frac{1}{2}\log_e 3\right) \text{ sq units}$$

**53.** Here, 
$$\int_{2}^{a} \left(1 + \frac{8}{x^{2}}\right) dx = \int_{a}^{4} \left(1 + \frac{8}{x^{2}}\right) dx$$

$$\Rightarrow \left[x - \frac{8}{x}\right]_{2}^{a} = \left[x - \frac{8}{x}\right]_{a}^{4}$$

$$\Rightarrow \left(a - \frac{8}{a}\right) - (2 - 4) = (4 - 2) - \left(a - \frac{8}{a}\right)$$

$$\Rightarrow \qquad a - \frac{8}{a} + 2 = 2 - a + \frac{8}{a} \Rightarrow 2a - \frac{16}{a} = 0$$

$$\Rightarrow \qquad 2(a^2 - 8) = 0$$

$$\Rightarrow \qquad a = \pm 2\sqrt{2}$$

$$\therefore \qquad a = 2\sqrt{2}$$
[neglecting -ve sign]

- **54.** The point of intersection of the curves  $x^2 = 4y$  and x = 4y 2 could be sketched are x = -1 and x = 2.
  - :. Required area

$$= \int_{-1}^{2} \left\{ \left( \frac{x+2}{4} \right) - \left( \frac{x^2}{4} \right) \right\} dx$$

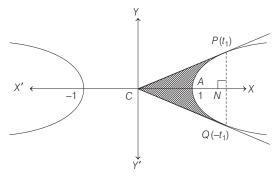
$$= \frac{1}{4} \left[ \frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$

$$= \frac{1}{4} \left[ \left( 2 + 4 - \frac{8}{3} \right) - \left( \frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$

$$= \frac{1}{4} \left[ \frac{10}{3} - \left( \frac{-7}{6} \right) \right] = \frac{1}{4} \cdot \frac{9}{2} = \frac{9}{8} \text{ sq units}$$

**55.** Let 
$$P = \left(\frac{e^{t_1} + e^{-t_1}}{2}, \frac{e^{t_1} - e^{-t_1}}{2}\right)$$
 and  $Q = \left(\frac{e^{-t} + e^{t_1}}{2}, \frac{e^{-t_1} - e^{t}}{2}\right)$ 

We have to find the area of the region bounded by the curve  $x^2 - y^2 = 1$  and the lines joining the centre x = 0, y = 0 to the points  $(t_1)$  and  $(-t_1)$ .



Required area

$$= 2 \left[ \operatorname{area of } \Delta PCN - \int_{1}^{\frac{e^{t_{1}} + e^{-t_{1}}}{2}} y dx \right]$$

$$= 2 \left[ \frac{1}{2} \left( \frac{e^{t_{1}} + e^{-t_{1}}}{2} \right) \left( \frac{e^{t_{1}} - e^{-t_{1}}}{2} \right) - \int_{1}^{t_{1}} y \frac{dy}{dt} \cdot dt \right]$$

$$= 2 \left[ \frac{e^{2t_{1}} - e^{-2t_{1}}}{8} - \int_{0}^{t_{1}} \left( \frac{e^{t} - e^{-t}}{2} \right) dt \right]$$

$$= \frac{e^{2t_{1}} - e^{-2t_{1}}}{4} - \frac{1}{2} \int_{0}^{t_{1}} (e^{2t} + e^{-2t} - 2) dt$$

$$= \frac{e^{2t_{1}} - e^{-2t_{1}}}{4} - \frac{1}{2} \left[ \frac{e^{2t}}{2} - \frac{e^{-2t}}{2} - 2t \right]$$

$$= \frac{e^{2t_{1}} - e^{-2t_{1}}}{4} - \frac{1}{4} (e^{2t_{1}} - e^{-2t_{1}} - 4t_{1})$$