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Area

Topic1 Area Based on Geometrical Figures

Without Using Integration

Objective Questions I (Only one correct option)

1. If the area enclosed between the curves y = kx? and
x=ky?, (k >0), is 1 square unit. Then, % is
(2019 Main, 10 Janl)
1 2 3
= il (d) £
J3 V3 2
2. The area (in sq units) of the region {(x, y): y*=2x

(@ 3 () (©

and 2 + y? <dx, x 20, y 20} is (2016 Main)
4 8
a) Tt —— m—=
() 3 (b) 3
© T _42 @ - 22
3 2 3

3. The common tangents to the circle x>+ y? =2 and
the parabola y? =8x touch the circle at the points
P,Q and the parabola at the points R, S. Then, the

area (in sq units) of the quadrilateral PQRS is
(2014 Adv.)

(@3 ()6 ©9 ()15
4. The area of the equilateral triangle, in which three

coins of radius 1 ¢cm are placed, as shown in the
figure, is

(2005, 1M)
() (6 + 4/3) sq cm (b) (4J/3 - 6) sq cm
(¢) (7+ 4J3)sq cm (d) 4+/3 sq cm
5. The area of the quadrilateral formed by the

tangents at the end points of latusrectum to the
2 2

ellipse L A 1,1s
9 5 (2003, 1M)

(a) 27/4 sq units (b) 9 sq units
(c) 27/2 sq units (d) 27 sq units

6. The area (in sq units) bounded by the curves
y=|x|-1land y=-|x|+1is (2002, 2M)
(a) 1 (b) 2 (c) 22 (d) 4

7.

The triangle formed by the tangent to the curve
f(x) = x® + bx — b at the point (1,1) and the coordinate axes,
lies in the first quadrant. If its area is 2 sq units, then the
value of b is (2001, 2M)
(-1 ()3

(c)—3 @1

Objective Questions II
(One or more than one correct option)

8.

Let P and @ be distinct points on the parabola y? = 2x such

that a circle with PQ as diameter passes through the vertex
O of the parabola. If P lies in the first quadrant and the
area of AOPQ is 3+/2, then which of the following is/are the
coordinates of P ? (2015 Adv.)

@ (4,203) (b) (9,3V2) (c)%%@ (d) (1, 2)

Numerical Value

9.

A farmer F| has a land in the shape of a triangle with

vertices at P(0,0), @(1,1) and R@2,0). From this land, a
neighbouring farmer F, takes away the region which lies
between the sides PQ and a curve of the form y =x" (n >1).
If the area of the region taken away by the farmer F, is
exactly 30% of the area of APQR, then the value of n is

..................... (2018 Adv.)
Fill in the Blanks
10. The area of the triangle formed by the positive X-axis and
the normal and the tangent to the circle x* + y* =4 at (1, /3)
is ... (1989, 2M)
11. The area enclosed within the curve |x|+|y|=11s ....... .
(1981, 2M)
Analytical & Descriptive Question
12. Let O (0,0),A2,0) and B, %) be the vertices of a
triangle. Let R be the region consisting of all those points P
inside AOAB which satisfy d(P,0A)= min



312 Area

{d (P,OB), d(P, AB)}, where d denotes the distance
from the point to the corresponding line. Sketch the
region R and find its area. (1997C, 5M)

Passage Based Questions

13.

Consider the functions defined implicity by the
equation »* —3y + x =0 on various intervals in the real
line. If xO¢o ~ 2)0 & ), the equation implicitly
defines a unique real-valued differentiable function
y=f (). If xO¢ 2,2), the equation implicitly defines a
unique real-valued differentiable function y=g (x),
satisfying g (0) =0. (2008, M)

If f(- 10«/5) =24/2, then " =10 V2) is equal to
(a) ﬂ (b) —ﬂ 4«/§ (d) —ﬂ

732 732 © B3 73

Topic2 AreaUsing Integration

Objective Questions I (Only one correct option)

1.

If the area (in sq units) bounded by the parabola
y? =4Axand the line y = Ax, A >0, is %, then A is equal to

(2019 Main, 12 April I1)
(a) 2J6 (b) 48 () 24 (d) 43

If the area (in sq |units) of the region
{(x, y): y* <dx,x+ y<1, x20,y=0} is a+/2 + b, then
a — bis equal to (2019 Main, 12 April I)

10 8 2
= b) 6 = d) -=
() 3 () (© 3 (d) 3
The area (in sq units) of the region bounded by the

curves y =2 and y =| x + 1|, in the first quadrant is
(2019 Main, 10 April II)

3 3 1 3 1
a) — log, 2+ = (¢) = d) = -
()2 () log, 2()2 ()2 og. 2
The area (in sq units) of the region

0 y2 0.
A=[x,y):=—<x<y+4[is

0 2 0 (2019 Main, 9 April I1)
(a) 30 ®) i;’ © 16 @ 18
The area (in sq units) of the region

A={(x,y): 22 <y<x+2}is
13 9

(2019 Main, 9 April )

31 10

c) — d) —

(© 5 (d) 3
LetS@)={(x, y): ¥’ < x,0 < x<o} and A@)is area of the
region S@). If for A\, 0 <A <4, A(\): A4)=2:5, then A
equals (2019 Main, 8 April Il)

(@) 2@215§ ®) 4@2@1 © 4@215§ @ 2%@1

The tangent to the parabola y? = 4xat the point where it

intersects the circle x* + y? =5 in the first quadrant,
passes through the point

DBE 0B B 0By

14.

15.

10.

11.

12

13.

14.

The area of the region bounded by the curve y = f (x),
the X-axis and the lines x=a and x=b, where
—w<qg<b<-2is

(@) Ib# dx + bf (b) - af (a)
@3l @)} - 1

b X
by -[— >~
«3[{f (0)}* - 1

b x
—— _dx-0bf(b
(© Ja S @r -1 x = bf (b) + af ()

-[—F  dx-bf®
(d) B @P - 1] x = bf(b) + af (@)

J'_ll g' (x)dxis equal to
@28-) ({®O

dx + bf (b) - af (a)

() - 2g() (d) 2g()

The area (in sq units) of the region
A={(x,y) O R|0< a< 3,
0<y<4,y<x®+3x}is

53
29 8
(a) 6 (b)

(2019 Main, 8 April I)

59 26

(c) = (d —

6 3
The area (in sq units) of the region bounded by the
parabola, y= x> +2 and the lines, y=x+1,x=0 and
x=3,1s (2019 Main, 12 Jan)

15 17 21 15
a) — —_ c) — d) —
(a) 5 () A (© B (d) .
The area (in sq units) in the first quadrant bounded by
the parabola, y = 22 + 1, the tangent to it at the point

(2, 5) and the coordinate axes is (2019 Main, 11 Jan )

14 187 8 37
a) — - c) — d) =
() 3 () ol (© 3 (d) o
The area (in sq units) of the region bounded by the curve
x% =4y and the straight line x =4y -2 1s
(2019 Main, 11 Janl)
7 9 5 3
a) — = c) — d) =
() 5 () 5 (© A (d .
The area of the region A ={(x,y);0< y<x|x|+1 and

(2019 Main, 9 Jan 1)
2
GV
3

—1<x<1}in sq. units, is

4 1
()2 (b - (© =
3 3
The area (in sq units) bounded by the parabola
y=x% -1, the tangent at the point (2, 3) to it and the
Y -axis 1s (2019 Main, 9 Jan )

8 56 32 14
= = = d) —
(a) 3 (b) 3 (0) 3 (d) 3
Let g(x) = cos %% f(x) =Jxanda ,B @ <B)be the roots of

the quadratic equation 18x% - 91 + TC =0. Then, the
area (in sq units) bounded by the curve y = (gof)(x) and
the linesx=a, x=Band y =0, is (2018 Main)

(a) é(ﬁ -1 ®) é(ﬁ + 1)

© %(ﬁ -J2) () é(ﬁ -1



15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

The area (in sq units) of the region
{(r, y):x20,x+ y<3,x°<4yand y< 1+ J/x}is

(2017 Main)
59 3 7 5
oY s ! Q2
(a)12 (b)z (0)3 ()2
Area of the region {(x, y)} OR*: 3= Jfla+ 3|,
5y < (x+9) <15} is equal to (2016 Adv)
1 4 3 5
= = g Q2
(a) 6 () 3 (0) 5 ( )3

The area (in sq units) of region described by (x, y) y* < 2x

and y=4x-11is (2015 JEE Main)

7 5 15 9
a) — — c) — d) —
()32 (b)64 ()64 ()32
The area (in sq units) of the region described by
A={x, y):x®+y*<land y*<1 -x}is (2014 Main)
m, 4 mn_4 m_2 m, 2
a) — + — — == c)——= d) —+ =
()2 3 (b) 5 3 © 5 3 ()2 3

The area enclosed by the curves y=sinx + cosx and

. . .
y =] cos x —sin x| over the interval %, EEIS (2014 Adv.)

(a) 442 -1 (b) 2/2(J2 - 1)
(© 2(W2+1) @ 2J2(2+1)

The area (in sq units) bounded by the curves
y= Jx, 2y —x+3 =0, X-axis and lying in the first
quadrant, is (2013 Main, 03)

(@) 9 ®) 6 (© 18 ) %7

Letf:[-1,2] -
f@) = fQ -x), O] 1,2] IER, = Ii xf () dxand Ryare
the area of the region bounded by y = f(x), x=-1,x =2

[0, ©) be a continuous function such that

and the X-axis. Then, (2011)
(@) R, =2R, () R, = 3R,
(© 2R, =R, (d) 3R, =R,

If the straight line x =56 divide the area enclosed by
y=(1 -x>2 y=0and x =0 into two parts R 0<x<b)

and Ry(b <x<1)suchthat R, — R, = i Then, b equals

1

3 1 1
2 2 2 4 =
(a) 1 (b) 5 (0) 3 (d) . o1y

The area of the region between the curves

1+sinx 1-sinx
y= [————and y= |[————
cos X cos X

lines x=0 andngis

and bounded by the

(2008, 3M)
V2-1 ¢ V2-1 4t
(@) ————=dt (b ——dt
o A+ tHV1-¢2 o A+ tH1-¢

J2+1 At J2+1 t
(0) —dt (d) - dt
Jo 1+ tHN1-¢2 fo 1+ t?) 1-¢2
The area bounded by the curves y = (x —1)%, y = (x +1)?
and y = iis (2005, 1M)

(a) é sq unit (b) g sq unit (c) ?11 squnit  (d) % sq unit

25,

26.

27.
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The area enclosed between the curves y=ax’ and
x=ay? (@ >0)is 1 sq unit. Then, the value of a is
(2004, 1M)

1 1
Q=
()3

NE)
The area bounded by the curves y = f (x),the X-axis and
the ordinates x =1l and x = b1is (b — 1) sin (3b +4).Then,
f (x) is equal to (1982, 2M)
(a) (x = 1) cos (3x + 4)

(b) 8sin (3x + 4)

(c) sin (3x + 4) + 3(x — 1) cos (3x + 4)

(d) None of the above

The slope of tanget to a curve y = f(x) at [x, f (x)] is 2x+ 1.
If the curve passes through the point (1, 2), then the

area bounded by the curve, the X-axis and the line x =1
is

(a) ®) % ©1

3 4 5 1
° 2 2 d) =
(3)2 (b)3 (0)6 ()12
Objective Questions II
(One or more than one correct option)

28. If the line x=a divides the area of region
R={(, y) OR*:4’< )< x,0<x<1} into two equal
parts, then (2017 Adv.)
(@20 -4 +1=0 bya*+4*-1=0

1 1
—<oa<l1 d)0<as<—
(©) 5 (d) 5

29.

30.

31.

If S 2be the area of the
y=e * ,y=0,x=0and x =1. Then,

(@) S () Sz1- 1
e

e
1 1 1 1 1

c) S<= + T o+ -

CREH: A R

Area of the region bounded by the curve y = ¢* and lines

(2009)

region enclosed by
(2012)

@ S<

x=0and y=eis

(@) e-1 (b) fln(e+1—y>dy

© e- I; ¢ dx @ [ In ydy

For which of the following values of m, is the area of the

region bounded by the curve y=x -2 and the line

y =mxequals = ? (1999, 3M)
2

(@) -4 (b) -2 (© 2 (d) 4

Analytical & Descriptive Questions

32.

Aa® 4a 10F 10 342 4+ 340
It b? 4b 155;‘(1) =32+ 350
B 4c 1ff@ 8 B¢ T3¢

f(x) is a quadratic function and its maximum value
occurs at a point V. A is a point of intersection of y = f (x)
with X-axis and point B is such that chord AB subtends
a right angle at V. Find the area enclosed by f(x) and
chord AB. (2005, 5M)
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33.

34.

35.

36.

37.

38.

39.

40.

41.

Find the area bounded by the curves x> =y, 22 = - y
and y? =4x - 3. (2005, 4M)
A curve passes through (2,0) and the slope of tangent at
@+1)*+y-3

(x+1)

Find the equation of the curve and area enclosed by the
curve and the X-axis in the fourth quadrant. (2004, 5M)

point P(x, y) equals

Find the area of the region bounded by the curves
y=x2, y=12-4% and y=2,

which lies to the right of the line x = 1. (2002, 5M)

Let 6#0 and for j=0,1,2..., n. If S; is the area of the

region bounded by the Y-axis and the curve

) Ly
xe® =sin by, TALS y< w Then, show that

b (b)
Sy, S;,8S,...,S, are in geometric progression. Also,
find their sum for a = -1 and b =T1. (2001, 5M)

If f (x) is a continuous function given by

- [2x, lx|<1
FO=E, v,

lx|>1
Then, find the area of the region in the third quadrant
bounded by the curves x = -2y?and y = f (x)lying on the
left on the line 8x + 1 =0. (1999, 5M)

Let C; and C, be the graphs of functions y = x% and
y=2x,0 <x <1, respectively. Let Cy be the graph of a
function y = f (x),0 <x <1, f (0) =0. For a point Pon C,,
let the lines through P, parallel to the axes, meet Cy,and
C; at @ and R respectively (see figure). If for every
position of P(on C,) the areas of the shaded regions OPQ

and ORP are equal, then determine f (x). (1998, 8M)
Y
0,1) (1/2,1) (1,1)
C, C
Q {2
X
000 |c, (1,0)
R

Letf(x) = max{x% (1 -x)%,2x (1 —x)}, where 0 < x< 1.

Determine the area of the region bounded by the curves
y=f (x),X-axis, x =0 and x = 1. (1997, 5M)

Find all the possible values of b >0, so that the area of
the bounded region2 enclosed between the parabolas

x° . .
y=x-bx’and y= b is maximum. (1997¢C, 5M)

If A, is the area bounded by the curve y = (tan x)" and
the lines x=0,y =0 and x=g.

1
n+1

Then, prove that forn >2, A4, + A, ,, =

42,

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

<A<1

and deduce n .
2n +2 2n -2

(1996, 3M)

Consider a square with vertices at (1,1), (-1, 1), (-1, -1)
and (1, —1). If S is the region consisting of all points
inside the square which are nearer to the origin than to
any edge. Then, sketch the region S and find its area.
(1995, 5M)
In what ratio, does the X-axis divide the area of the
region bounded by the parabolas y=4x-x> and
y=a®-x? (1994, 5M)

Sketch the region bounded by the curves y=x? and
y=2/(1 + x%). Find its area. (1992, 4M)
Sketch the curves and identify the region bounded by
x=1/2, x=2,y =logx and y =2%. Find the area of this
region. (1991, 4M)
Compute the area of the region bounded by the curves

log x
ex

y=exlogxand y = , where loge=1. (1990, 4M)

Find all maxima and minima of the function
y=x(x-1)20<x<2.

Also, determine the area bounded by the curve
y=x (x —1)% the Y-axis and the line x=2. (1989, 5M)

Find the area of the region bounded by the curve
C:y=tan x, tangent drawn to C at x=1/4 and the
X-axis. (1988, 5M)

Find the area bounded by the curves

22+ y?2=25,4y =|4 —x% and x =0 above the X-axis.
(1987, 6M)

Find the area bounded by the curves &+ y* =4,

¥2=-2 yandx=y. (1986, 5M)

Sketch the region bounded by the curves y = /5 — x% and

y=|x-1]and find its area. (1985, 5M)

Find the area of the region bounded by the X-axis

and the curves defined by y=tanux, —g <x sg and

y =cotx, Estg (1984, 4M)

Find the area bounded by the X-axis, part of the curve
y= Ql + %@ and the ordinates at x =2 and x =4. If the
x

ordinate at x = a divides the area into two equal parts,
then find a. (1983, 3M)

Find the area bounded by the curve x>=4y and the

straight line x =4y -2.

¢ ot
2

hyperbola x%>— y?>=1. Find the area bounded by this

hrperbola and the lines joining its centre to the points

corresponding to t; and —¢;. (1982, 3M)

e +e

For any real ¢, x = 5 ,y = is a point on the




@, =4
* max 27
1 t
. 0 «/E—fgs units
%g ris i
. %—T@squnits
. %logﬁgsqunits

Area 315

%qu units 38, f(x)=x"-x%0<x<1

17 squnit 40. b =1
27

a o .
42. = (16+/2 — 20) sq units
g( )gsq

121 : 4 44, @T—ggsqunits
3
- O 2 50
. M -2 log 2 + §[I sq units 46. Mﬂsq units
Olog2 2 20 0 4e O

10 .
s Ymin =0, Y sq umtsg

O i} N
49. Hx +25sin™! %@Eﬁq units
T o1
51. % - ,@ it
2 5 sq units

53. 242

9
54. 3 sq units

mo_m

(4 _
i _Z(eztl —e 2t _4t1)

On substituting y2 =2x1n Eq. (11), we get
2 +2x=4x Ox*=2x0 x=00orx=2
a y=0ory=%2 [using Eq. (1)]
Now, the required area is the area of shaded region, i.e.
Y

A2 2)
x2 +y2=4x

X

0, O\ BJ(2,0)

y2=2x

y'

i 2
Required area :M —J' V2x dx

T[(Z)

II * 2=t - f |:|
~ zf F
=TT - 242 -0] = @T @sq unit

PLAN () y = mx + a/mis an equation of tangent to the parabola
v = dax.

Answers
Topic 1 37
1. (b) 2. (b) 3. ) 4. (2)
5. (d) 6. (b) 7. (c) 8. (a,d) 39,
9. (4) 10. 243 sq units
11. 2 sq units 12. 2 - «/g) sq unit 13. (b) 43.
14. (a) 15. (d)
Topic 2 45
1. (¢ 2. (b) 3. (d) 4. (d)
5. (b) 6. (c) 7. (b) 8. (c) 47
9. (a) 10. (d) 11. (b) 12. (a)
13. (a) 14. (a) 48
15. (d) 16. (c) 17. (d) 18. (a)
19. (b) 20. (a) 21. (c) 22. (b)
23. (b) 2. (a) 25. (a) 26. (c) 50
27. (¢) 28. (a, c) 29. (b, d) 30. (b, ¢, d)
125 . 1 . 52
31. (b, d) 32. e sq units 33. 3 sq unit
34, y=x"-2x— it
y =x“-2x 3 sq units 55.
_ 0 1 _ O
35. Mﬂsq units o+ e) Y
o 3 0O E(l +1%)  e-1 [
Topic1 AreaBased on Geometrical Figures
Without Using Integration
1. We know that, area of region bounded by the parabolas
X2 = 4ay and y2 =4bxis ? (ab) sq units.
On comparing y = kx” and x = ky” with above equations,
1 1
we get 4a =—and4b=—
k k
ad a= 1 and b ==
4k 4k
O Area enclosed between y = kx? and x = ky? is
lenionlo. 1
s Bl e
a % =1 [given, area =1 sq.unit]
a k2= 1 O k=+ L
3 3
O R=L [k >0]
NE] ‘ 3.
2. Given equations of curves are y*=2x

which is a parabola with vertex (0, 0) and axis parallel

to X-axis. . (1)
And o+ y?=4x
which is a circle with centre (2, 0) and radius =2 ...(i1)

(i) Alineis atangentto circle, if distance of line from centre is
equal to the radius of circle.

(iii) Equation of chord drawn from exterior point (x4, y;) to a
circle/parabola is given by T = Q.

(iv) Area of trapezium = % (Sum of parallel sides)
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Let equation of tangent to parabola be y = mux + 2 By symmetry, the quadrilateral is a rhombus.
m

Y
It also touches the circle 2% + y? =2. A
o Bpb P

1+m® '
4 2 |:|m4 ;” . g b © B g
U m*"+m"=2 0 m"+m”-2=0 7
O m?-1) (m*+2) =0 :
ad m=+1,m?=-2 [rejected m?=-2] v
So, tangents are y=x+2,y=-x -2,
They, intersect at (-2, 0). So, area is four times the area of the right angled triangle
A formed by the tangent and axes in the Ist quadrant.
Y

O Equation of tangent at @, g@is

X gx+§BX:1 O i+1:1
9 35 9/2 3
O Area of quadrilateral ABCD
=4 [area of A AOB|
Equation of chord PQis —2x=2 0 x=-1 =4 % Dg EBQ =27 sq units
Equation of chord RSis O=4(x-2) 0 «x=2 6. Th o cloarl h verti ‘th -
. . e region is clearly square with vertices at the points
O Coordinates of P, @, R, S are (1, 0), (0, 1), 1, 0) and (0, — 1).
P(_171)a Q(_la _1)7R(294)7S(27 _4) Y
. 2+8)x3 _ .
O Area of quadrilateral = Yy 15 sq units
O Ay =—lxl +1
4. Since, tangents drawn from external points to the circle y = lxl 1
subtends equal angle at the centre. X X
A
1,0 (1.0)
©0-1)
Qs Y'
O Area of square =+/2 x+/2 =2 sq units
0, 0, 7. Lety=f @) =a>+bx -b
1cm)\ 1cm
B 30° 30° \C
REE L) 2cm £ y3om
0 0o O,BH 30
o — OlD —
In AO,BD, tan30°=—= 0O BD=+/3cm X
BD
Also, DE =0,0, =2 cm and EC =3 cm The equation of the tangent at P (1, 1)
Now, BC =BD + DE + EC =2 +2+/3 to the curve 2y = 2x* + 2bx —2b is
1=2x0 +b(x+1) -2b
3 3 yE
0 AreaOfAABng(BC)Z:§M(1+\/§)2 0 y=@Q+bx-Q +b)
_ Its meet the coordinate axes at
. = (6 +4+/3)sqcm Looltb b
5. Given,x—+y—:1 47240 yB
9 5 1
To find tangents at the end points of latusrectum, we HArea of AOAB = 9 0A x0B
find ae. 9
1 _@1+0d) .
: _ 2 2 _ _ = —-_ =
ie. ae=4,/a“-b —\/47 =2 2 x @+ b) 2 [given]

and  ba-eh)= b -CH=2 0 A+b?+4@Q+5)=0 0 b>+6b+9 =0

O b+3)?%=0 O b=-3



8.

10.

Since, 0 POG= 90

ar (AOPQ) =32
0 0 1

O lzf12/2 t 1]=+3J2 O
t212 ty, 1

()

O i(—4t1+4t2)213x/§|] t1+%:3ﬁ [t >Ofor P]

1

O t2-3V2t, +4=0 O (4 -2v2) (¢, —+2) =0

a 2 =2 or 242

0 P(1,42) or P@4,242)

We have, y=x",n>1

= P(0,0)Q(1,1)and R(2, 0) are vertices of A POR.
y

Q(1,1)

For | Y F

=|x"

X' X
P(0.0) (1,0) R(2.0)

M
O Area of shaded region = 30% of area of A POR

30 1
O Io(x—x )dx—ﬁ ><E x2 x1

n+ld 3 )|
X D:fD Bi_

1o 3
n+1H 10

Equation of tangent at the point (1, v3) to the curve
2+ yP=4 is x++8y=4

whose X-axis intercept (4, 0).

Y
x 0.0

11.
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Thus, area of A formed by (0, 0) (1, +/3) and (4, 0)

0 0 1
:% 1 43 1 =%|(0—4\/§)|:2\/§squnits
4 0 1
The area formed by | x| + | y| =11is square shown as below
Y
—x+y=1 x+y=1
X0 (I
x+y=1 x—-y=1
v

O Area of square = (v2)? =2 sq units

12. Let the coordinates of P be (x, y) .

Equation of line OA be y =0.

Equation of line OB be +/3 y = x.

Equation of line ABbe /3 y =2 - x.

d (P,0A) = Distance of P from line OA = y

d (P, OB) = Distance of P from line OB = @
d (P, AB) = Distance of P from lineAB = M

Given, d (P, 0A) <min {d (P, OB), d (P, AB)}

- -9|0
y<min B3 =%l B y+x-210
o 2 2 0
. y Byl ysw
Case 1 Whenysw [since,+/3y-x< 0]
ysx_T\@y 0O @++3)y<x0 y<xtan15°®
Case 11 Whenysw,
2y<2-x-+3y [since,/3y+x-2<0]
O @++3)y<2-x 0 y<tan15°02 - x)
B (1,1A3)
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From above discussion, P moves inside the triangle as TOpiC 2 Area Using Integration
shown below :

O Area of shaded region 1. Given, equation of curves are
2 _ .
= Area of AOQA y° = 4Ax ...()
1 B Heioh and y=Ax ...(>11)
—5( ase) X (Height) A> 0
=1 (2) (tan15°) = tan 15° = (2 —/3) sq unit Area bounded by above two curve is, as per figure
2
Y
13. Given, ¥ -3y +x=0 A yPean
\
O 32 g 4 @) }
dx dx 0 !

. SyZ&D+6y %g 37—0 ...(i) \\
yEN

Atx=-10+2,y=242

On substituting in Eq. (i) we get
the intersection point A we will get on the solving Eqgs. (i)
3(2\/7)2Efi* -3 E@ +1=0 and (ii), we get

Nx? = x
|:| ﬂ = —i 4
dx 21 0 x= 3 soy=4
Again, substlt;mng in Eq. (11), we get So, A EX 4@
2 y @2
3(2\/7) *6 (2\/7) % Now, required area is
2 J2 4\
g 21 @ =- 12 = [(2VAx —Ax) d
T QL2 {( VAx = Ax) dx
0 &y _-122 _-42 o o .
d @1 732 —oUx WB A E%D
b b 0o— 0 0«0y
14. Required area =I y dx =I f(x) dx U2 H)
= [f) &L, _[ f'(@)x da - g @Xg
- _ _°r = 32 § - M -8
= b/(b) - af @) - [| '@ dx =2-2= 2222
xdx . 1
=bf(b)-af(@) + [ —————— It is given that area = =
I a3[{f(x)}* - 1] 9
-1 -1 0 0 ﬁ = 1
. f' (x = 7}’ = = 3A 9
E’ dx 3(°-1) Bl{f@y - 11 - Ae 24
15. LetI :J'I g dx=[gW], =g 1) -g(-1) 2. Given regionis{(x, y):y><4x, x+ y<1,x=0, y =0}
-1
Since, ¥ =3y +x=0 ...Q0)
and y=8 )
O {2 -3g@) +x=0 [from Eq. (1)]
Atx=1, {g)P -3g(1)+1=0 ...(i1)
Atx=-1,{gC-1DP -3g(-1) -1 =0 ...(ii1) ol A(1,0) .
On adding Egs. (i) and (i), we get Now, for point P, put value of y =1 — xto y* = 4x, we get
{g)y +{g(-1)y -3{g 1) +g(-1)} =0 A-x%=4x0 2>+ 1 -2x =4x
0 [+ g-DIlgWy* +{g(-1)}* -g()g(-1) -3] =0 0 2 —6x+1=0
g g)+g(-1)=0
6+ .36-4
0 g()=-g(-1) 0 x=— e
0 I'=g1)-g(-1) _3+93.

=g -{-g)} =2gQ1)



Since, x-coordinate of P less than x-coordinate of point
A(1,0).

O x=3-22
Now, required area

3-2/2 1
=f,  wdx+[  _(-x)dx

B2 3‘2ﬁ+[| xzd
=4l o5 X ~-50O
3/2 o 0 2@—2\/5

4, 92, [ _ 10 q_ L (8-2J2)°
-4 2/2) @1 EH (3 - 2V2) R
zg[(ﬁ_l)z]?,/z_'_% -3 +2.2 +%(9+8—12\/§)
_4 _ap D 1

_3(\@ 1) 2+2\E+2 62

:%(Qﬁ -3@) +3(/2) 1) 442 +6

=§(5ﬁ—7)—4ﬁ 6 =¥ 10

3
=av2 +b (given)
So, on comparing a :Sand b= _%
0 a—b:§ +E =6
3 3

3. Given, equations of curves

Ox+1 ,x=2-1
y=2and y=|x+1|=0
ox-1 ,x<-1

-+ The figure of above given curves is

Y y=x+1
(1.2)
y=-x-1 /=X

0.1

X' X
(-1,0) )

In first quadrant, the above given curves intersect each
other at (1, 2).

So, the required area :J—; ((x+1) -2%) dx

2 X E]] 0 x 0
=gx—+x— 2 0 D'Iaxdx: a +Cp
R log,2p O log, a 0
a 2 1 0
= +1 - +—
@ log, 2 logeza
_3__1
2 log,2
. . g y? O
4, Given region A =[x, y):~— <x<y+4[]
O 2 O

2
g BAy
2
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O y? = 9% @)
and x=y+40 y=x-4 ...(>11)

Graphical representation of A is

' /% y2
a 2"

™

v
On substituting y = x — 4from Eq. (ii) to Eq. (i), we get
(x-4)?% =2«

0 x2 - 8 +16 =2«

O ¥ -10x+16=0

ad x=-2)(x-8 =0

O x=2,8

O y=-24 [from Eq. (i1)]

So, the point of intersection of Egs. (i) and
(ii) are P(2, — 2) and Q(8, 4).
Now, the area enclosed by the region A

4 2[] 2 3t
:J’ dy+4)—yimiy:%+4y—yim
%0 2g o2 60,

:g£+16—%§—%—8+§§
2 6 6
=8+16—g—2+8—i1

3 3

=30 - 12=18sq unit.

5. Given regionis A ={(x, y): 2> <y <x+2}

Now, the region is shown in the following graph

Y y=x+2
xe=y
A
(20)
&
v
For intersecting points A and B
Taking, P=x+20x%-x-2=0
O ¥ -2+x-2=0
ad x(x=-2)+1(x-2) =0
0 x=-1,2 0O y=14

So, A(-1,1) and B (2, 4).
2

Now, shaded area = J’[(x +92) -x?] dx
]

2 of
=Ek—+2x—LD :?+4—§§—%—2+1§
02 3g, =2 3 3
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6.

®

Given, S@) ={(x, y): y¥* <x,0 <x <a}and
A(a)is area of the region S(@)
A ‘
3 y?=x
0 N X

A
[})63/2@ 4.
Clearly, AM) =2[ Vx dx=2 0 == X2
{ Bi2f 3
Since, AR) =g, 0 <\ <4)
A4) 5
)\3/2 2
o Al oo BB

3 3
0 Apdn a-lpef
4 5 5

. Given equations of the parabola y* = 4x ...Q0)

&+ yr=h ...(ii)
So, for point of intersection of curves (i) and (ii), put
y® =4xin Eq. (i), we get

and circle

22+ 4x-5=0
a ¥ +5x-x-5=0
ad (x-1)(x+5)=0
g x=1,-5

For first quadrant x=1, so y =2.

Now, equation of tangent of parabola (i) at point (1, 2)
isT =0

0 2y=20x+1)

O x-y+1=0

The point % , ZQ satisfies, the equation of line
x—y+1=0
Given, y < x>+ 3x
a ys@c+§g—g D@+§g2§y+g§
2 4 2 4

0<y<4and0<x<3
OThe diagram for the given inequalities is
Y

Since,

y y=x2+3x

10.

and points of intersection of curves y = x> + 3xand y =4
are (1, 4) and (-4, 4)
Now required area

1 3 2|j
=[6 +3x)dx+‘[4dx=%§ +37"D + [4af?
0 1 u )

1 3 +9 11

=7+7+4(3—1)=—2 +8 :—+8:@squnits
3 2 6 6

. Given equation of parabola is y = x®+2, and the line is

y=x+1
y y=x2+2
y=x+1
0.2) !
W
; X
1 0 (3,0)

The required area = area of shaded region

_ 3 2 _ e
—IO ((x +2)—(x+1))dx—J'o (x*-x+1)dx

IE ﬁ_ 79
=g - txg = —7+3§—0
B 2 v 3 2
:9—g+3 =12 —221—5sq units
2 2 2

Given, equation of parabola is y = x? + 1, which can be

written as x2=(y —1). Clearly, vertex of parabola is
0, 1) and it will open upward.

y+5

Now, equation of tangent at (2, 5) is =2x+1

[ Equation of the tangent at (x;, y,) is given by
T = 0. Here, 5(y+ y) =xx +1]

y=4x -3
y= 4x-3
Y
e 5)
0N
‘R
ol/a 20 X
3
&9

Required area = Area of shaded region

= I02 y(parabola) dx — (Area of APQR)
=, 02 (& + 1) dx — (Area of APQR)

f
" Os +x%0—;@—i§m



[ Area of a triangle = % x base x height]

:%+2§—0—%%§5

_14 25 _112-75_37

3 8 24 24

11. Given equation of curve is x*> =4y, which represent a
parabola with vertex (0, 0) and it open upward.

_x2
Y y= 7
X+ 2
=73
B
X' 4 X
T T
10 2
YI

Now, let us find the points of intersection of x* = 4y and
4y=x+2
For this consider, x? = x + 2

0 ¥2-x-2=0
ad x-2)(x+1) =0
Ox=-1,x=2

Whenx=—],theny:711

and when x = 2 then y =1
Thus, the points of intersection are A 1, l@and B (2,1).
Now, required area = area of shaded region

= [ty (line) - y (parabola)} dx

12. We have,
A={x,y):0<sy<x|x|+1land-1<x<1
When x>0, then 0< y< 2%+ 1
and when x< 0, then 0< y< —x%+1

Now, the required region is the shaded region.

[-y=x%+10 x% =(y - 1), parabola with vertex (0, 1) and
y=-2+10x*=-(y -1,
parabola with vertex (0,1) but open downward]

Area 321

We need to calculate the shaded area, which is equal to

_[—01 (- % + Ddx +J';(x2 +1)dx

TN
O3 0O, 03 0O
I O .0
=~ - = +1--0
éb Er 3 + ( 1)%+%+1B H

2 4
=-_—_ 4+ _ =
3 3
13. Given, equation of parabola is y = x> -1, which can be
rewritten as x> =y + Lor x% = (y - (—1)).
0 Vertex of parabola is (0, —1) and it is open upward.
Equation of tangent at (2, 3) is given by 7' =0

0 %:xxl -1, where, x; =2

and ¥ =3.
+
0 y23: x-1
a y=4x -5
y=x2—1

©,-1)

y=4x-5

Now, required area = area of shaded region

=I02 (y(parabola) — y(tangent)) dx
= J‘j[(x2 -1) - (4x -5)] dx

2 2
:.fo (® —4x +4) dx :fo (x -2)% dx

(x - 2)° ? @-2° 0-2° _8
= = - = — sq units.
3 0 3 3 3
14. We have,
O 18x% - 91w + TC =0
O 18x% =616 = 3T + T =0
6x-1m)@Bx -1 =0
O x:E’E
6 3
Now, a <f Ol:E,
6
-
=3
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Given, g(x) = cosx”and f(x) = Jx

¥ = gof (x)
d y=g(f(x)) =cosx

Area of region bounded by x =a,x =3, y =0 and curve

y=8(f(x)1is
3

A= [cosxdx
m/6
A = [sin x]™3

T m_43 1

A=sin— -sin— =— —-=—

3 6 2 2
-10
A:E\/QD
o 2 0O

15. Required area

=_[01 (A +Jx)dx +L2 @ -x)dx —IOQ x;dx

y=1+Vx

1.2/

4y=x2

@1
| X+y=3

X

16. Here, {(x, y) OR?: » .Jlx+ 3|,5)< (x+ 9k 15}

O y 2 Jx+3

E x+3,whenx>-3
/—x-3,whenx<-3

o Ox+3,whenx>-3

g y2

or =
Y %-S—x,whenxs—?)

Shown as

Y

YZZ*X*% LS ye=at3
XI
-3 0

v

Also, 5y<(x+9)<15

ad (x+9)=5yand x<6

Shown as
Y
(0, 9/5) =
HH X
(-9, 0) 0
X=6
O {(,y) OR*: 2 fle 3|,5)< (¢ 9x 15}
Y
(12)
C
B \’A‘J\\
X' 0o : X
e -400a4 EE300D 6
v

0 Required area = Area of trapezium ABCD
— Area of ABE under parabola
— Area of CDE under parabola

= 96 [y de- [ [ dx
0 0°

15 O-3-xY20 Ox+3)%20

"2 0 3 070 g O
H "2 H, B 2 H,

15,200 0 2 o 15 2 16 15 18 3
2 3 3 2 3 3 2 3 2

17. Givenregionis{(x, y): y><2x and y=4x-1}

y% < 2xrepressents a region inside the parabola

y?=2x ...
and y =4x — 1 represents a region to the left of the line
y=4x -1 ...(>11)

The point of intersection of the curves (i) and (i1) is
(@x-1)2=2x O 16x%2+1-8x=2x
O 16x* -10x+11=0 O le,l
2°8
So, the points where these curves intersect are % , 1@

and %,%@




1 0O 20
O Required area:I E{E—y— y
-vz20] 4 20
-1

1%1‘“ 0 1, 34
e

402 yD_]jz 63’ 12

1 1 1 10
SRR
4% 20 6@1 s
_1[p, 80 1000

1t s 6 fHH
_1.15 3 _9
= x— - — sq units

478 16 32

Do

18. Given, A={(x,y):a>+y*<land y*<1 -}

D
<1,0>&/<o,1)

. 1 1
Required area = 3 w? + 2_[0 - y)dy

1 2 O y3|j
=—n()*+20y —=0
SR s

= % + équ units
3

<

19. PLAN To find the bounded area between y = f(x) and y = g(x)

betweenx =atox = b.
Y

X
o]
0 Area bounded = I = f(x)]dx + J’ - g(x)]dx
=J' [f(x) = g(x)|dx
a
Here, f(x)=y=sinx+cosx,when0$xsg
and gx)=y —| cos x —sin x|
osx—sinx, 0<x< n
_ g B
[§in x — cos x, I stlr
] 4 2
could be shown as
Y
sl f(x) y= Sinf +lCOSx
=2 sin (x+ I‘l)
’
9() 9@
} X
@) w4 w2

Area 323

O Area bounded = J';m{(sin x + cos x) — (cos x —sin x)} dx
/
¥ I" ?((sinx + cos %) — (sin x - cos %)} dac
—J’ 2smxdx +J' 2cosxdx

=-2][cos x]"/4 +2 [sinx @]"2

=4-22= 2\/7(«/7 —1)squnits

20. Givencurves are y = Jx ...Q0)
and 2y-x+3 =0 ...(11)
Y
y = 70
5
%
X ) X
3
-3
2
v

On solving Egs. (i) and (ii), we get
2Jx - (Jx)® +3 =0
O Wx)? =2Jx -3 =0
0 Wx-3)Gx+1)=0 O Jx=3
[since, vVx = —1is not possible]
O y=3
Hence, required area
3 3
=[, (e —x) dy = [ {2y +3) - 3% dy
_ u 2 _ y3 _ _a — .
= +3y - =9+9 -9 =9squnits
0 30

R :I_zle(x) dx .G)

Using I:f(x) dx:I:f(a +b -2 dx
R :_[_21 (- A -x) dx

0 R = _[_21 A - %) f) dx ... (i)

[f(x) = f(1 - x), given]
Given, R, is area bounded by f(x), x = —1 and x =2.

0 R,= _[_21 () dox ..(iiD)
On adding Egs. (1) and (i1), we get

2R, = I_Zl () dx (V)
From Egs. (iii) and (iv), we get

2R, =R,

22. Here, area between 0 to bis R, and b to 1 is R,.

0 I:)’ A -2 dx—f A -2 dx :1

Et1 x)3Ef’ E(1 x)3D1 1
D -3 [b |:| -3 Q 4
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LT RAC RIS SrNPAIIPAC R

3[(1 b) ]"'3[0 1 -b6)7]

2ot 11 _pp =1
O 3(1 R I SUEE
O (1—b):1 0 b:%

Odx
cosx [

/4D + 0
23. Required area = J’n 1+sinx \/1 sin x

Cos X

0 l+sinx _1-sinx _ .[J
- >0
H cosx cos X B
0 O
0 2tan > 2tan” O
Of1+ 2 1- 20
O 2 2 X[
nia[] 1+tan”— 1+tan iD
:J'O 0 x - ) Ddx
1-tan”— 1-tan"— [J
a
% 1+ tan%> 1+ tan%> %
E 1+t 1-t O
an — —tan —
:IT[MD 2Dd_x
0 1-tan— 1+tanf§
2
_nn 1+tanf—1+tanf 2tanf
_Io I
1-tan?Z
4tdt

Puttanf—tlj fsec fdx dt—I
2 2 0

(1 +12) 41 -2

Jo-
2 4t dt [ tang=«/§ -1]

A I S
° IO 1+tHJ1-¢2

24. The curves y=(x-1)%, y =(x +1)%?and y =1/4 are

shown as
Yy=@+1)’ y=@-1
174 ¥p
R Q
y=1/4
\M N/ X
1 -1/2 |0 1/2 A

where, points of intersection are

(3c—1)2:1 a leand(x+1)2:1Dx:— 1
4 2 4 2

ie. Q%,i@ and RQ—%%
10

12
O Required =2 -1)%-=
equired area J’ Bx ) 4#x
2
Ox-1° 1 uf
20 -0
r)
-0

=92 =

t

a 1 1 8 _1 .
-—— -0 = =— =—squnit

Hsm s O3 %24 3

25. As from the figure, area enclosed between the curves is

OABCO.

Thus, the point of intersection of
y=ax® and x=ay’

x=a (ax?)?

1 1
x=0,— 0O y=0,—
a a
. . . 1 1
So, the points of intersection are (0, 0) and % , —@D
a

O Required area OABCO = Area of curve OCBDO

—Area of curve OABDO
UaD 2 .
ad J'O S\F ax Ddx 1 [given]
Lo xm”“
Bla 32 3
. 21
3a 3a
1 1
O a’== 0 & —— a>0
3 7 [ ]

. b .
26. Since, L f(x)dx=(b—-1)sin 3b +4)

On differentiating both sides w.r.t. b, we get
f(b)=3(b —1)dos 3b +4) +sin 3b +4)
O f(x)=sin Bx+4) +3(x —1) cos (3x +4)
27. Given, dy _ 2x+1
dx
On integrating both sides

Idy:J’(2x+1)dx

ad y = x% + x +C which passes through (1,2)
O 2=1+1+C
ad C=0
d y= o+

Y

y=x(x+1)
X -1 Om‘a‘c=1 X
v



Thus, the required area bounded by X-axis, the curve
andx=1
20

0
= (% +x)dx = +
J, B 2§
1,1

3
28. f; (- % )dx =2I::(x -)dx

5 .
=—sq unit
6 q

2 4D

1:2&—“

4 "02 40

20t -402+1=0
16 -8
O 2= (-a0O,1)

4

a?=1- 1

a a1 a2 33

I: f(x)dx = Sum of areas of rectangle shown in shaded part.

(i) If f(x)=g(x)when defined in [a,b], then

I: Fx)dx L" g(x)dx

2
Description of Situation As the given curve y=e™

cannot be integrated, thus we have to bound this function by
using above mentioned concept.

Graph for y=e™ ’

Y
y
s
Ve
‘o T X
V2
Since, x* <x when x 00, 1]
O - 2- x or e e
D 1 _x2d S 1 _xd
Ioe x_.[oe x
O Sz-(e™) =1-1 ()
e

1.2
Also, .[0 e ¥ dx < Area of two rectangles

B BT
@1 Q .. (i)

IN

%\H mg:

%\

30.

31.

Area 325

1 1 1
0 —=+-—=0-—=
oA
Shaded area:e—%‘; e’ dx%ZI

[from Egs. (i) and (ii)]

Also, J'leln(e+1—y)dy [pute+1-y=t0 =-dy=dt]

:Ll In t(-dt)=[Intde=["In ydy=1

Casel When m=0

In this case,
and

y=x -2 ...Q0)
y=0 ...(11)
are two given curves, y > 01s total region above X-axis.
Therefore, area between y=x—-x?and y=0

is area between y = x — x* and above the X-axis
Y

Hence, no solution exists.
Case II Whenm <0
In this case, area between y = x —x% and y = mxis

OABCO and points of intersection are (0,0) and
{1 -m,m@d —m)}.

O Area of curve OABCO :I;_m [x — 2% —ma] dx
Y

g
=
0
1 3 3 _1 3
_71_ _71_ :71_
2( m) 3( m) 6( m)
0 é(l—m)B -9 [given]
O (1-m)p =27
0 1-m=3
0 m=-2
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Case III Whenm >0
In this case, y = mxand y = x — x? intersect in (0,0) and
{(1 —m), m(1- m)} as shown in figure

y:x—xQ

(x - 2% —mx) dx

_oo xz_x?’l:(r
“H MY Ty

0
O Area of shaded region =J'1
-m

—% A =m) (A -m)? +% a -my
1

—g a —m)3
9__ 14y -
a 5 5 1 -m) [given]
O 1-m)® =-27
ad 1-m)=-3
O m=3+1=4
Therefore, (b) and (d) are the answers.
Qa® 4a 1|:| 0 Ba?+3a0
32. Given, %uﬂ ab 1 |j(1) D:E;bz +3p0
o 4c IH[f(z) 0 B +3c
O 4a?f(-1)+4af Q) +f @) =3a? +3aq, ()
4b2 f (-1)+4b f (1) + f ©2) =3b% +3b ...(1)
and 4c% f (-1) +4cf Q) + f©2) =3¢ +3¢ ...(ii1)

where, f(x)is quadratic expression given by,
f(x) = ax® + bx + cand Egs. (i), (ii) and (iii).
O 4% f(-1)+4xf Q) + @) =34 +3x
or {4 f (1) -3} x® +{4f1) -3} x +f (2) =0 ...(iv)
As above equation has 3 roots a, b and c.
So, above equation is identity in x.
i.e. coefficients must be zero.
O f(-1)=3/4, f(1) =3/4, f ©) =0 (V)
F@=ax+bx+ec
0 a=-1/4,b=0 and c =1,using Eq. (v)

.2
Thus, f ()= 4

x
shown as,

Let A (-2,0),B=@Qt, -t +1)

Since, AB subtends right angle at vertex V (0, 1).
0 1 El -
2 2t

a t=4
0 B8, -15)
So, equation of chord ABis y (39;- 6)

s _ 2
I 4 x+3x+6Dd
-2 0 4 2

O 2
-2 .32 o8

0 12 4 O,

—é 1?;8 +48 +24 — Q2+ +3—6Q§

0 Required area =

125 .
= T sq units

33. The region bounded by the curves y=x2 y = -2 and
y% =4 x - 3is symmetrical about X-axis, where y = 4x — 3
meets at (1, 1).

O Area of curve (OABCO)

=92 8; 2 dx—J'lM (1/4x—3)dx§
2 Y

Dl _ Oax- 3)3/2|:|‘L O
@3% 0 3[@/2 %/45

=92 %—7§
6
:1D1— :lsqunit
6 3

34. Here, slope of tangent

_(x+1)+y-3
dx (x+1)
0 Do err) + 072
dx (x+1)
Putx+1=Xand y-3=Y
dy dY
O =
dx dX
0 dY _ +z
ax X
0 ay 1.

dX X

1
P =d X% oo 2L
X



O Solution is, Y BL:J'XBldX'FC
X X

O Z:X+c
X

y—=38=(x+1)% + ¢(x +1), which passes through (2, 0).

0 - 3 ©B% 3c
g c=-4
0 Required curve
y=(x+1)% -4(x +1) +3

d y=x* -2
3
O Required area = D.[ (x - 2x)dx —D% 200
l:l
=842 sq units
3 3

35. The points in the graph are
A(1,1),B(2,0),C @,2),D (2,2)

y'

O Required area

=J’ﬁ{x2 - @ -} dx +Ij{2 ~(2 -2)} dux

J' (2x —2)dx+J'I4—x)dx

e _0° 0 #d
=0, T2xg trox -0
03 g O 30
/2
—D72
03

- |
= 0 12\/§Esqunits

N 3

0 g
V2 - +2,]+ @—§—4ﬁ+
3 oo 3

[
SR

2420
3 0

Area 327

. Given, x= (sin by) e ¥

Now, -1 <sinby<1
d - % % ginbg ¥
a - % g %

Y

v
In this case, if we take a and b positive, the values —e *
and e “ become left bond and right bond of the curve
and due to oscillating nature of sin by, it will oscillate

between x=¢ ® andx=-e¢ ¥
(j+1) b

.= 1 -y
Now, S T P sin byle ™ dy
Wince, I = [ sin by @dy 0
EI 'e_ayI in by + bcos b 0
=——— (asn + bcos
3572 ( y y)D

0 -1 D—a(j+1)n
0 Sj=5——>k °
B :
{asin(j+)m+bcos(+1) 1}
- ajm 0
-—e b (asinjm+ bcosjm [

_ 1 7(] +1
Sj= oy ple 0 bey
—e M0 +b(-1)}]
(- 1Y e? 0 _g Dg
- 2 2 +1
O qg*+b [
g O
[ (172 = (1) (-1) =(1)]
ST Oie, 0
_be b b 1
a’+ b?
_a.. gt O
be b b +1§
0 S; - a®+ b? _ e_gjTT
Sj—l b _g(J—l)T[ %m . IE -g(J—l)Tl
a®+b?

=e b =constant

0 8¢,5:,8s,...,S; form a GP.
For a=-1landb=T1
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Tg[l, 0 j
Tt kT
i (1+n§2 @ 2)(1 9
C o _TMlte & Tt o, "
0O jZOS] (1+T[)2 jZOe] (1+T[2) (e + e +...+e)
_Tl+e et 1)
@+ e-1
[xl<1

37. Given, f (x) = H

% +ax+b x| >1

Y
1
x=-2y2 *=Tg

y = f(x)
X 0 X
v
>+ ax+b, ifx<-1
O f(x)=BZx, if-1<x<1

%rz+ax+b, ifx>1
f1s continuous on R, so fis continuous at —1 and 1.

lim f(x)— hm fe) =f(-1)

x - -1
and lim f(x)= lim f (x)=/Q1)

x- 17 -1
a l-a+b=-2and2 =1 +a +b
ad a-b=3and a+b=1
O a=2, b=-1

Z+2x-1, if x<-1

Hence, f (x) =02« if -1<x<1

He?+2x-1, 1if x21

Next, we have to find the points x= -2y*and y = f (x).

The point of intersection is (-2, —1)

us[l
f(x)Ddx
=I” \F -1, 2 - l)dx—I Y ox dx
_ 2 3-8 _ ) _ o 127 -8
302 (07712 % +x° xEELZ [x7] -

/2 0
2 g _23/2['_@_1_'_1 +1§
32 g o3

O Required area = I

8 ol .0
+ 2 44 +2§— = 1
%3 B4 H

\f[2f 9792 4 2+§

_ 63 509 _ 761
= + —— sq units
16x3 64x3 192

38.

39.

Refer to the figure given in the question. Let the
coordinates of P be (x, x?), where 0 < x < 1.

For the area (OPRO),
Upper boundary: y = % and
lower boundary : y = f (x)
Lower limit of x:0

Upper limit of x: x

0 Area (OPRO) = I; t2dt - on f @) dt
g«
“BE S

—Lff(t)dt

For the area (OPQO),
The upper curve : x = \/5
and the lower curve : x = y/2

@) dt

Lower limit of y: 0
and upper limit of y: x?

x2 x2
0 Area (OPRO) = [ Vi dt-|, édt

2 39?1 o
=21t -t

3[ 16 4[ 16
_25 o

3 4

According to the given condition,
4

x _2
- f(t)dt—gxg -=

On differentiating both sides w.r.t. x, we get

= f )0 =247 -4
d f@) =+ -x*0<x<1
We can draw the graph of y=x% y=(1 -x» and
y =2x(1 - x) in following figure

Y

(1.1
CUNy=-ar
Q e /Y= x

X'

¢ 1/3
v

Now, to get the point of intersection of y=x? and
y=2x (1 - x), we get

¥ =2x(1 -x)
O 3x% = 2x
x(Bx—-2)=0
a x=0,2/3

Similarly, we can find the coordinate of the points of
intersection of

y=(1-+Yand y=2x (1 -x)arex =1/3and x=1



From the figure, it is clear that,

1-x2, if0<x<1/3

[ (@) =Rx1A-x), if1/3<x<2/3

H £ if2/3<x<1

0 The required area
A:I1 () dox
:I (1 x)? dx+I 2x(1 x)dx+I dx
/3 3E9f

01 x)gd +E~F2‘2i Dlstl
a 3 EO 3 H/3 % %/3

_19 13 19 17
— =—sq unit
T81 81 81 27

2
40. Eliminating y from y = % and y = x - bx?, we get

%2 = bx - b
O x=0,

1+ b2
Y 2
'y
‘ y =x-bx
X i X
-1 o] b
145
v
Thus, the area enclosed between the parabolas
bi(1 + b)? [I , «°0
A =J' - bx? - X Odx
0 [I bO
/(1 + b)>
02 2 1+p2d 1. b
i~ 0 = 0—s
@ 3 b 0 6 (1+ b

On differentiating w.r.t. b, we get
dA _1.(1+ b%)212b —2b% 1 + b%) 26
db 6 1+ b?)*
1-b%
T3 1+

For maximum value of A, put % 0

a b=-1,0,1, since b >0

41.

Area 329

O We consider only b =1.

Sign scheme for % around b =1 is as shown below :

From sign scheme, it is clear that A is maximum at
b=1.

/
We have, 4, = [ Y(tan 0" dx

Since, 0 <tanx <1, when 0 <x < 11/4
We have, 0 < (tan x)""! < (tan x)" for each n ON

0 /4 ¢ n+1d < n/4t "y
.[0 (tan x) X Io (tan x)" dx
Now, for n > 2
T/ n n+ 2
A+ A, =IO [(tan x)" + (tan x)" ™ “] dx
—I (tan 0" (1 + tan? x) dx
Y
y = (tanx)”
(174, 1)
B— «
@) nz
/4 n 9
:IO (tan x)" sec” x dx
/4
0 0
= 1 (tan x)"*!
Bn+1) a
(n+1)( "=
Since, A, 9<A, ., <An,
then A, +A ,,<2A,
O L <94,
n+1
1
ad <A
2n+2 " ®
Also, forn>2A, + A, <A, +A, _4= 11
n -
O 24, <1
n-1
0 A <1 (i)
" 2n-2
From Egs. (i) and (i1) 1 <A < !
s 2n+2 " 2n-2
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42. The equations of the sides of the square are as follow :
AB:y=1,BC:x=-1,CD:y=-1,DA:x =1

Let the region be S and (x, y) is any point inside it.
Then, according to given conditions,

Vo + yr <1 —xl |1 + x0T -yl,11 +y

O <l -0t A +0% 1 -y A +y)?
O K+ yt<a® -2x +1,2% +2x +1,
y2—2y + 1,y2 +2y +1

d y2<1-2x, % <1 +2x, 22 <1 -2yand 2?2 <2y +1
Now, in y?*=1-2x and y*=1 +2x, the first equation
represents a parabola with vertex at (1/2,0) and second
equation represents a parabola with vertex (—1/2, 0)
and in x>=1-2y and x®>=1 +2y, the first equation
represents a parabola with vertex at (0, 1/2) and second
equation represents a parabola with vertex at (0,—-1/2) .
Therefore, the region S'is lying inside the four parabolas

y2 =1 —-2x, y2 =1+2x, ¥ =1 +2, =1 -2y

Y A1
O = 0
=
\\596
%
=
TR~ R
ZIRCAN
N7
0 HF ao X

where, S is the shaded region.
Now, S is symmetrical in all four quadrants, therefore
S =4 x Area lying in the first quadrant.

Now, y*=1-2x and x* =1 -2y intersect on the line
y = x. The point of intersection is E (V2 =1, +/2 - 1).
Area of the region OEFO

= Area of A OEH + Area of HEFH

_l N2 12 —
-z(ﬁ 1) +J'ﬁ_11/1 2x dx

1 2 of?
=Lz -nze B-owp2 2d (4

:% @+1-2v2) +% (1 +2 -242)%?

43.

RPNV P
=2 B-248) + L [(Z -1
:%(3-2«/5%%(\@—1)3
=%(3‘*E) +% 242 -1 -3V2 (V2 -1)]
Lol

=5 6-2V2) + S B2 -7

1 1

=2 [9-6v2 +10V2 -14] =
6 6

Similarly, area OEGO :é (42 -5) sq units

[4v2 -5] sq units

Therefore, area of S lying in first quadrant
:% @2 -5) :% (4~2 - 5) sq units
1

3
Given parabolas are y =4x — x
and y==—(x -2)% +4

or (x-2)% = -(y -4)

Therefore, it is a vertically downward parabola with
vertex at (2,4) and its axisis x = 2

) 1@2 1
=x“-x 0O :@C—f -
Yy y D) 1

Y y=x2-x

Hence, S :% (2 -5) == (16+/2 -20) sq units

2

and

(2.4)

)

3
17 1
H @‘gg‘y+z

This is a parabola having its vertex at % , —EQD

< 1
(1/2,-1/4)

.. 1 .
Its axisis at x = 5 and opening upwards.

The points of intersection of given curves are
dx-x*=x*-x O 2x°=5«x

a x@2-5x)=0 0 x=0,g

Also, y = x* — x meets X-axis at (0,0) and (1, 0).

5/2 B 9
O Area, A, :J'O [dx = x7) = (x" —x)] dx



44.

This area is considering above and below X-axis both.
Now, for area below X-axis separately, we consider

Dx2x3d11

——J' «® -x)dx = = 1squnits
DQ 3 D}) 2 3 6
Therefore, net area above the X-axis is
A -Ay= 125-4 121 $q units
24 24

Hence, ratio of area above the X-axis and area below
X-axis

-121. l—121 4
24 6

The curve y = x? is a parabola. It is symmetric about
Y-axis and has its vertex at (0,0) and the curve

5 1s a bell shaped curve. X-axis is its asymptote

1+x
and it is symmetric about Y-axis and its vertex is (0, 2).
Y
y =2
Al2
1.1 C BOL -,
i i y71+x2
X' i
0} M X
Since, y=x° ...Q0)
2 ..
and = ..
YT 2 (i)
g y= 2
1+y
a y2+ y—-2=0
O (-D@+2)=00 y=-21
But y=20,s0 y=1 0 =+ 1

Therefore, coordinates of C are (-1, 1) and coordinates
of B are (1,1).

Required area OBACO =2 x Area of curve OBAO

01
-2%014_36 dx - Io % dxg

0 ﬂ EI
=202 tan™! x]%) [JX’S @n

g aﬁ4

1 D @'{ @sq unit
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45. The required area is the shaded portion in following
figure

<
<
1
N
=

0 The required area
2 . 0 9% [F
=J' 2" —logx) dex=0— —(xlog x —x)0
V2 Clog2

a
M él g2+3Dsqun1ts
Olog2 2 20

2

46. Both the curves are defined for x >0.
Both are positive when x > 1 and negative when0 < x <1.
We know that, lim (logx) - -
x-0"
Hence, lim log x
x-0% ex
second curve.
And lim exlogx
x-0"
= lim ¢ log x
x-0" 1/x

¢ %Q
= lim =0
=0 oA
2
Thus, the first curve starts from (0, 0) but does not

include (0, 0).
Now, the given curves intersect, therefore

— —oo, Thus, Y-axis is asymptote of

[(0) x oo form]

0 @ formD
H o E

[using L’Hospital’s rule]

exlog x = log x
ex
ie. @x?-1)logx =0
ad x:1,1 [-x>0]
e
Y
X 0 ?1/e
v
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0 The required area

:I;‘E@(@—exlog%dx

d 2 d m2-50
=% log x)* —egx— Qlogx-1) = 5I:|sq units
ed 2§, De U
47, Given, y==x(x-1)?
O @_xm(x 1) + (x —1)2
dx
Y y = x(x—1)?
4| max
27 § 0
X O 1/3 1 min
v
=(x-1)@x+x-1)
=(x-1)Bx-1)
+e - o +
1/3 1
ad Maximum at x=1/3
1 4 ,
Ymax = Q‘ g 97 49. Given

Minimum at x =1
Ymin = 0
Now, to find the area bounded by the curve y = x (x - 1)%,
the Y-axis and line x =2.

2
O Required area = Area of square OABC _.[0 ydx

curves,

Hence, equation of tangent at A % , lgis

yi_lzg 0 y—1=2x—E
x—T/4 2
Y y =tanx
A
' o] 1
X : X
B oy
2
v

ex-y = -17

O Required area is OABO

/
=I;T ! (tan x) dx —area of A ALB

= D3L UL

=log 2 "3 % —T[T_ZQD
= Qog«f —i@sq unit

w2+ y2 =254y =|4 -1

= [log |sec x|

2 “ —x2)2

=25
16
Y
5 dy = 4 — 2
4y = x2—-4 dy =x2—4
i o) i
' H H X
X -5\-4 -2 2 4
x2+y2=25
-5
v

could be
sketched as below, whose points of intersection are

=2X2—J'2x(x—1)2dx 0 @? +24) (x> - 16) =0
% I:QT . u x=x4
-1’0 1 3 . 04 2 [ — 4?00
-1)° O dxUO = — 42 _
% 3 Ed) I (x-1) X O Required area 2gom dx IO DFAL de
4[?
ca-f oy G2 _J-
3 12§ 20 4
_ @2 1 10_10
T4 T TaE g Saunits :2%m+225sin_1%§§
48. Given, y=tanx 0O %:sec%c 10 x‘o’ﬁ 108 40
y TeF 0Ty Ty
O %@ =2 O L *0 BH
4



= % +25 sin™! %@Esq units

50. Given curves are x° + y*> =4, %% = —\2yand x = y.
Y
x+y
. -2 0 V2
X 2| 2 X
-2
y! x2 =2y
Thus, the required area
V2 0
4 - %% dx| - xdx| -
-2 -2

:21f1l4—x2 dx—D%x—Do 0 H—E(

D2DID QBIQ)

2
=2 %W&—ﬁ —;lsin_lng -1 22

20 3
—o—m -2
=@2-m 3

= % - T@sq units

51. Given curves y=+5-2> and y=|x-1| could be

sketched as shown, whose point of intersection are
5-x2=(x-1)°

Y

M
O 5-xl=x?-2x+1
O 242 -2x -4 =0

Area 333

a x=2,-1
0 Required area

2 5 1 2
:I_l 5-x"dx —I_l(—x +1) dx —J’ (x -1) dx

2
:§\/5 X +s1n_1§\/—7§ﬁ Eea xg -%—xg
a, O O

a2

Ql g 5@ 1+7s1n Q%QE
-y B

= %in_1 2 +sin! i@— 1
V5 50 2

+15

N |

=Zgin'(1) ;—gf—%gsqumts
i 1
an x, —§SxS§
52. Given, y=[]
Ceot x, EstE
g 6 2
which could be plotted as Y-axis.
Y
y = cot x «— y =tanx
} ' n/2 T[ X
-2 -4 /|0 w4
3
v
0 Required area =J' (tanx) dx +I (cotx) dx
= [~log |cos x|]7* + [log sin x] 0%
O 43 10
=-[o ——Ogﬂjo — —1lo g
oe 75 ~OH* oy s 156
V3 1
=log— -2 log —
g D) g«/ﬁ
:logﬁ—logl :%loge?@sq units
2 2
a 8 _ o4 8
53. Here, : §l+?§dx—‘[a gl+?§dx
. n_sf_no_sd
H B B 8

O Qg—sg—@—@:@ -2) - —%@
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54.

55.

8 8 16

g a-—+2=2-a+— 0 2¢a —— =0
a a a
O 2 (a?-8)=0
ad a=+22 [neglecting —ve sign]
0 a=2+2

The point of intersection of the curves x®>=4y and
x =4y —2 could be sketched are x = -1 and x = 2.
0 Required area

=1 %‘;Q DDdx

%M_SQ% +%QE
=100 Q;% BZ» %squnits

We have to flnd the area of the region bounded by the
curve x2— y2 =1 and the lines joining the centre x =0,
y =0 to the points (¢;) and (—¢,).

Y
Pty)
A |
X' i
-1 C 1 N 3 X
Q(-ty)
v
Required area
0 el +¢71 0
=2 ldrea of APCN —J' 2 ydxO
H ' H
4 4 ot [ t1_—l1|] 0
= Ee ¢ % I” ay g
% O 0 0
20 _ 2 At -t O
:2%” e DdtD
5 8 ol 2 B
% _ g2 q
e -¢ (e —2)dt
4 2o
_ eZt1 e—Ztl 1 Q2t e—2t 2t|]
T4 282 2 T 7H
o -2
=° toe _1 (QZtl e _ 4t »
4 4
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