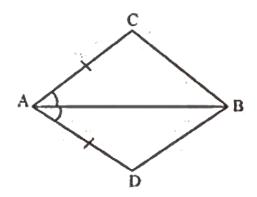


Exercise 7.1

1. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$ (See the given figure). Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?



triangles

Ans: Since AB is bisector of $\angle 1CAD$

Therefore, $\angle 1CAB = \angle 1DAB \dots 1$

Now, CA = DA [Given]

 $\angle 1CAB = \angle 1DAB$ [From (1)]

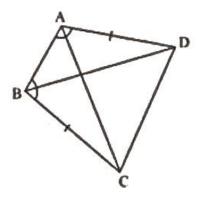
1AB = AB [Common]

 $\therefore \Delta \, 1ABC \cong \Delta 1ABD \otimes \qquad \qquad [By \, SAS]$

And so, 1BD = BC [CPCT]

Hence, we can state that BD and BC are equal in lengths.

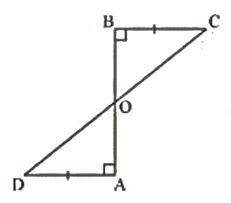
- 2. ABCD is a quadrilateral in which 2AD = BC and $\angle 2DAB = \angle 2CBA$ (See the given figure). Prove that
 - i. $\Delta 2ABD \cong \Delta 2BAC$
 - ii. 2BD = AC
 - iii. $\angle 2ABD = \angle 2BAC$



- **Ans:** (i) In $1\triangle ABD$ and $1\triangle BAC$,
 - 1AD = BC [Given]
 - $\angle 1BAD = \angle 1ABC$ [Given]
 - 1AB = BA [Common]

 $\therefore \Delta \ 1ABD \cong \Delta \ 1BAC \ [SAS]$

- (ii) 1BD = AC [CPCT]
- (iii) $\angle 1ABD = \angle 1BAC$ [CPCT]
- **3.** AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.



Ans: If AO = OB, then we can say that CD bisects AB.

To prove: CD bisects AB

Proof: \therefore BC and AD are both perpendicular to the same line segment AB.

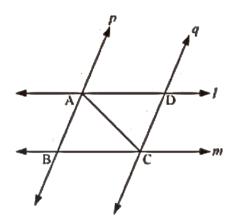
\therefore We can say that $1BC \parallel 1AD$	(1)
--	-----

Now, In $\triangle 1AOD$ and $\triangle 1BOC$,

AD = BC	[Given]
$\angle DAO = \angle CBO$	[Both right angles]
$\angle ADO = \angle BCO$	[Alternate interior angles, form 1]
$\therefore \Delta AOD \cong \Delta BOC$	[ASA]
$\therefore AO = BO$	[CPCT]
\Rightarrow CD bisects AB	

Hence proved.

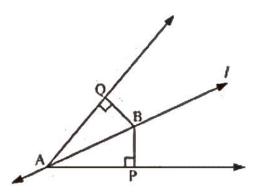
4. I and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that $\triangle 2ABC \cong \triangle 2CDA$



Ans: In $\triangle ABC$ and $\triangle CDA$,

$\angle BAC = \angle DCA$	[Alternate interior angles]
$\angle BCA = \angle DAC$	[Alternate interior angles]
AC = CA	[Common]
$\therefore \Delta ABC \cong \Delta CDA$	[ASA]

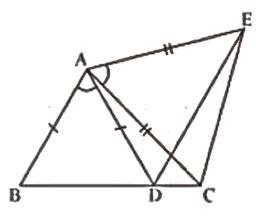
- 5. Line l is the bisector of an angle $\angle 2A$ and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle 2A$ (see the given figure). Show that:
 - (i) $\triangle 2APB \cong \triangle 2AQB$
 - (ii) 2BP = BQ



Ans: Since line 1 is the bisector of $\angle A$

Therefore, $\angle QAB = \angle PAB$	(1)
Now In $\triangle APB$ and $\triangle AQB$,	
$\angle QAB = \angle PAB$	[From 1]
$\angle AQB = \angle APB$	[Both right angled]
AB = AB	[Common]
$\therefore \Delta APB \cong \Delta AQB$	[AAS]
And so, $BP = BQ$	[CPCT]

6. In the given figure, 2AC = AE, 2AB = AD and $\angle 2BAD = \angle 2EAC$. Show that BC=DE.



Ans: Since $\angle BAD = \angle EAC$

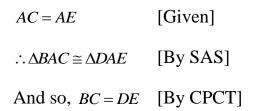
 $\Rightarrow \angle BAD + \angle DAC = \angle EAC + \angle DAC$

 $\Rightarrow \angle BAC = \angle DAE \qquad \dots (1)$

Now in $\triangle BAC$ and $\triangle DAE$,

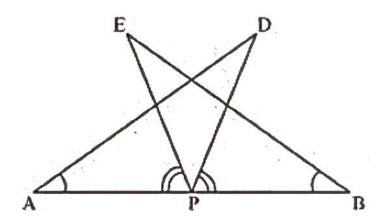
AB = DA [Given]

 $\angle BAC = \angle DAE$ [From 1]



7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle 2BAD = \angle 2ABE$ and $\angle EPA = \angle DPB$ (See the given figure). Show that

- (i) $\Delta DAP \cong \Delta EBP$
- (ii) AD = BE



Ans: Since, $\angle EPA = \angle DPB$

 $\Longrightarrow \angle EPA + \angle EPD = \angle DPB + \angle EPD$

 $\Rightarrow \angle DPA = \angle EPB \qquad \dots (1)$

Now, in $\triangle DAP$ and $\triangle EPB$,

 $\angle DAP = \angle EPB$ [Given]

AP = BP [P is the midpoint of AB]

 $\angle DPA = \angle EPB$ [From 1]

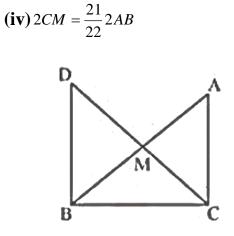
.

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that:

(i) $\triangle 2AMC \cong \triangle 2BMD$

(ii) $\angle 2DBC$ is a right angle

(iii) $\triangle 2DBC \cong \triangle 2ACB$



Ans:

(i) In $\triangle AMC$ and $\triangle BMD$,

AM = BM	[M is midpoint AE	8]
CM = DM	[Given]	(1)
$\angle AMC = \angle DMB$	[Vertically opposit	e angles]
$\therefore \Delta AMC \cong \Delta BMD$	[By SAS]	
$\therefore \angle ACM = \angle BDM$	[CPCT]	
$\therefore AC = DB$	[CPCT]	(2)

(ii) Since $\angle ACM = \angle BDM$

Also, $\angle ACM$ and $\angle BDM$ are alternate interior angles.

 $\therefore AC \parallel BD$

Now,

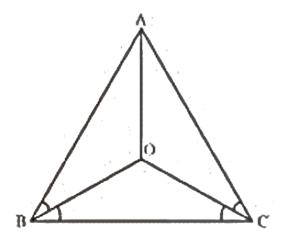
$\angle DBC + \angle ACB = 180^{\circ}$	[Co interior angles]
$\Rightarrow \angle DBC + 90^{\circ} = 180^{\circ}$	$\left[\angle ACB = 90^{\circ} \right]$
$\Rightarrow \angle DBC = 90^{\circ}$	

- (iii) In $\triangle DBC$ and $\triangle ACB$,
- $DB = AC \qquad [From 2]$ $\angle DBC = \angle ACB \qquad [Each 90^{\circ}]$ $BC = CB \qquad [Common]$ $\therefore \Delta DBC \cong \Delta ACB \qquad [By SAS]$ (iv) $\therefore DC = AB \qquad [CPCT]$ $\Rightarrow 2CM = AB \qquad [From 1]$ $\Rightarrow CM = \frac{1}{2}AB$

Hence Proved.

Exercise 7.2

- **1.** In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:
 - (i) OB = OC (ii) AO bisects $\angle A$



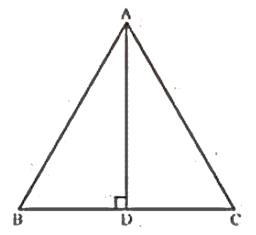
 $\Rightarrow \frac{1}{2} \angle ABC = \frac{1}{2} ACB$ $\Rightarrow \angle OBC = \angle OCB$ $\therefore OB = OC$ [Sides opposite to equal angles of Isosceles triangle are equal]

Now, In $\triangle ABO$ and $\triangle ACO$,

AB = AC	[Equal sides of Isosceles triangle]
OB = OC	[Proved above]

- AO=AO [Common]
- $\therefore \Delta ABO \cong \Delta ACO \qquad [By SSS]$
- $\therefore \angle BAO = \angle CAO \qquad [CPCT]$
- : AO bisects angle A.

2. In $\triangle ABC$, AD is the perpendicular bisector of BC (see the given figure). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.



: AD is perpendicular bisector of BC,

 $\therefore BD = DC$

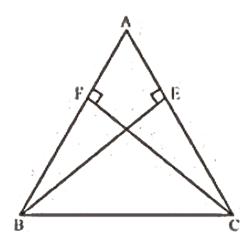
& $\angle ADB = \angle ADC$ [Each 90°]

Now, in $\triangle ABD$ and $\triangle ACD$,

AD = AD	[Common]
$\angle ADB = \angle ADC$	[Proved above]
BD = CD	[Proved above]
$\therefore \Delta ADB \cong \Delta ACD$	[by SAS]
$\therefore AB = AC$	[CPCT]

So, $\triangle ABC$ is an isosceles triangle with AB = AC

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.

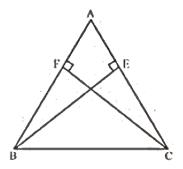


Ans: In $\triangle ABE$ and $\triangle ACF$,

$\angle AEB = \angle AFE$	[Each 90°]
$\angle BAE = \angle CAF$	[Common]
AB = AC	[Given]
$\therefore \Delta ABE \cong \Delta ACF$	[By AAS]
$\therefore BE = CF$	[CPCT]

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that

- (i) $\triangle 2ABE \cong \triangle 2ACF$
- (ii) 2AB = AC, i.e., ABC is an isosceles triangle

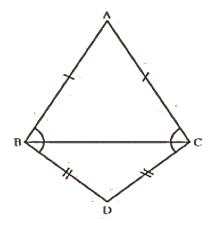


Ans: In $\triangle ABE$ and $\triangle ACF$,

$\angle BAE = \angle CAF$	[Common]
$\angle BEA = \angle CFA$	[Each 90°]
BE = CF	[Given]
$\therefore \Delta ABE \cong \Delta ACF$	[by AAS]
$\therefore AB = AC$	[CPCT]

And therefore, $\triangle ABC$ is an isosceles triangle with AB=AC.

5. ABC and DBC are two isosceles triangles on the same base BC (see the given figure). Show that $\angle ABD = \angle ACD$.



Ans: Since AB=AC, and DB=DC,

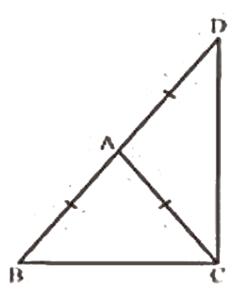
 \therefore ABDC is a quadrilateral with adjacent sides being equal.

 \Rightarrow ABDC is a kite.

We know that one pair of opposite (obtuse) angles of kite are equal.

Hence, $\angle ABD = \angle ACD$

6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that $\angle BCD$ is a right angle.



Ans: In $\triangle ABC$

 $\angle ABC = \angle ACB$ [angles opposite to equal sides of a triangle] ... (1)

Similarly, in $\triangle ADC$

 $\angle ADC = \angle ACD$ [angles opposite to equal sides of a triangle] ... (2)

Now since BD is a straight line,

$$\angle BAC + \angle CAD = 180^{\circ}$$
 ... (3)

And we know,

 $\angle BAC = \angle ADC + \angle ACD$ [Exterior angle of a triangle = sum of opposite interior angles]

 $\Rightarrow \angle BAC = 2 \angle ACD \qquad [From 2] \qquad \dots (4)$

Similarly,

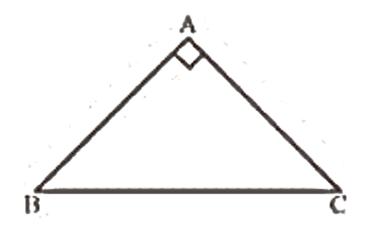
 $\angle CAD = \angle ABC + \angle ACB$

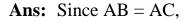
 $\Rightarrow \angle CAD = 2 \angle ACB \qquad [From 1]$ $\therefore 2 \angle ACB + 2 \angle ACD = 180^{\circ} \qquad [From 3, 4 \text{ and } 5]$ $\Rightarrow \angle ACB + \angle ACD = 90^{\circ} \qquad \Rightarrow \angle BCD = 90^{\circ}$

Hence proved.

7. ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

... (5)





 $\angle B = \angle C$ [Angles opposite to equal sides of a triangle]

Now, we know

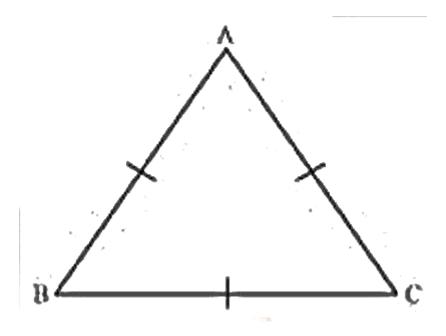
 $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property]

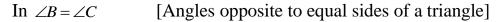
 $\Rightarrow \angle A + 2 \angle C = 180^{\circ} \Rightarrow 90^{\circ} + 2 \angle C = 180^{\circ} \Rightarrow 2 \angle C = 90^{\circ} \Rightarrow \angle C = 45^{\circ}$

 $\therefore \angle B = 45^{\circ}$ Hence $\angle B$ and $\angle C$ are each 45°

8. Show that the angles of an equilateral triangle are 60° each.

Ans:





Similarly,

 $\angle A = \angle B$ [Angles opposite to equal sides of a triangle]

 $\Rightarrow \angle A = \angle B = \angle C$

Now, we know that

 $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property]

 $\Rightarrow \angle A + \angle A + \angle A = 180^{\circ} \quad \Rightarrow 3 \angle A = 180^{\circ} \quad \Rightarrow \angle A = 60^{\circ}$

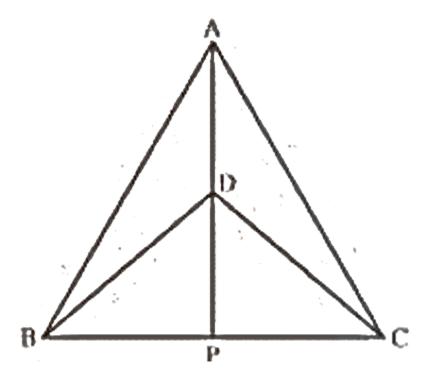
 $\therefore \angle A = \angle B = \angle C = 60^{\circ}$

Hence proved.

Exercise 7.3

1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that

- (i) $\triangle 2ABD \cong \triangle 2ACD$
- (ii) $\triangle 2ABP \cong \triangle 2ACP$
- (iii) AP bisects $\angle 2A$ as well as $\angle 2D$
- (iv) AP is the bisector of BC



Ans:

- (i) In $\triangle ABD$ and $\triangle ACD$,
- AB = AC [Equal sides of isosceles triangle]
- DB = DC [Equal sides of isosceles triangle]
- AD=AD [Common]
- $\therefore \Delta ABD \cong \Delta ACD \qquad [By SSS]$
- $\Rightarrow \angle BAD = \angle CAD \quad [CPCT]$
- $\Rightarrow \angle BAP = \angle CAP \qquad \dots (1)$

And $\angle ADB = \angle ADC$	[CPCT]	(2)
-------------------------------	--------	-----

(ii) In $\triangle ABP$ and $\triangle ACP$

AB = AC	[Equal sides of isosceles triangle]	
$\angle BAP = \angle CAP$	[From 1]	
AP = AP	[Common]	
$\therefore \Delta ABP \cong \Delta ACP$	[By SAS]	
$\therefore BP = CP$	[CPCT]	(3)
Similarly, $\angle APB = \angle APC$ [CPCT] (4)		
(iii) AP is bisector of $\angle A$ [From 1]		
Now, since AP is a line segment		

 $\therefore \angle ADB + \angle BDP = 180^{\circ} \qquad \dots (5)$

Similarly, $\angle ADC + \angle CDP = 180^{\circ}$... (6)

Comparing equations 2, 5 and 6 we can say that

 $\angle BDP = \angle CDP$ $\therefore AP \text{ bisects } \angle D$ Hence AP bisects both $\angle A$ and $\angle D$ (iv) We know, $\angle APB + \angle APC = 180^{\circ}$ $\Rightarrow \angle APB + \angle APB = 180^{\circ}$ [From 4] $\Rightarrow \angle APB = 90^{\circ} \qquad \dots (7)$

From equations 3 and 7 we can say that,

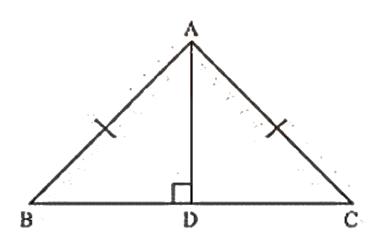
AP is perpendicular bisector of BC.

2. AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that

(i) AD bisects BC

(ii) AD bisects $\angle 2A$

Ans:



In $\triangle ADB$ and $\triangle ADC$

AD = AD [Common]

 $\angle ADB = \angle ADC$ [Each 90°]

 $\therefore \Delta ADB \cong \Delta ADC \qquad [By RHS]$

 $\Rightarrow BD = DC \qquad [CPCT]$

Therefore, AD is bisector of BC

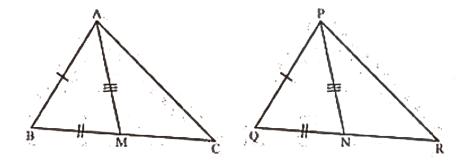
Similarly, $\angle BAD = \angle CAD$ [CPCT]

Therefore, AD bisects $\angle A$ as well.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see the given figure). Show that:

(i) $\triangle 2ABM \cong \triangle 2PQN$

(ii) $\triangle 2ABC \cong \triangle 2PQR$



Ans: (i) We know that BC = QR ... (1)

Now, Since AM is median of $\triangle ABC$,

$$\Rightarrow BM = \frac{1}{2}BC \qquad \dots (2)$$

Similarly, PN is median of ΔPQR ,

$$\Rightarrow QN = \frac{1}{2}QR \qquad \dots (3)$$

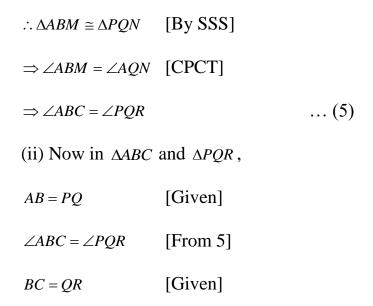
From equations 1, 2 and 3, we can say that,

$$BM = QN \qquad \qquad \dots (4)$$

Now in $\triangle ABM$ and $\triangle PQN$

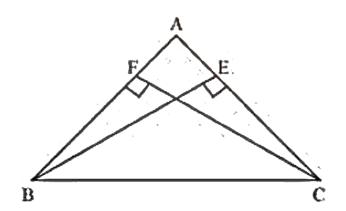
AB = PQ BM = QN[From 4]

AM=PN [Given]



4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Ans:



In $\triangle BEC$ and $\triangle CFB$

BE = CF	[Given]
	L J

 $\angle BEC = \angle CFB$ [Each 90°]

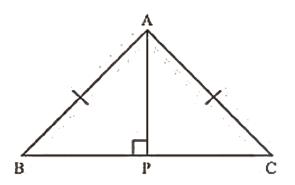
BC=CB [Common]

 $\therefore \Delta BEC \cong \Delta CFB \qquad [By RHS]$

 $\Rightarrow \angle BCE = \angle CBF$ [CPCT]

 $\therefore AB = AC$ [Sides opposite to equal angles of a triangle are equal] Therefore, $\triangle ABC$ is an isosceles triangle.

5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B= \angle C.



Ans: In $\triangle ABP$ and $\triangle ACP$

AB = AC	[Given]
AP = AP	[Common]
$\angle APB = \angle APC$	[Each 90°]
$\therefore \Delta ABP \cong \Delta ACP$	[By RHS]
$\Rightarrow \angle ABP = \angle ACP$	[CPCT]