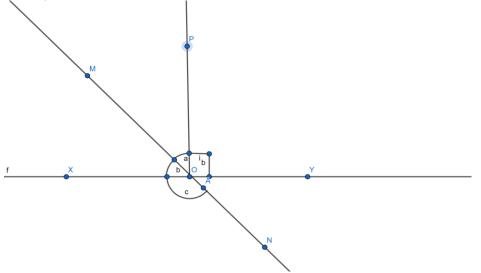


Exercise 6.1

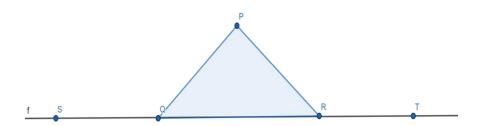
1.In the given figure, lines XY and MN intersect at O. If $\angle POY=90^{\circ}$ and a: b = 2:3, find c.



l ines and angles

Ans: Let the common ratio between a and b be x. $\therefore a = 2x$, and b = 3xXY is a straight line, OM and OP are rays from O. We know that a straight line covers 180° $\angle XOM + \angle MOP + \angle POY = 180^{\circ}$ Putting values for $\angle XOM = b$ and $\angle MOP = a$ $\Rightarrow b + a + \angle POY = 180^{\circ}$ $\Rightarrow 3x + 2x + \angle POY = 180^{\circ}$ $\Rightarrow 5x = 90^{\circ}$ $\Rightarrow x = 18$ $\therefore a = 2x$ $\Rightarrow a = 2 \times 18^{\circ}$ $= 36^{\circ}$ $\therefore b = 3x$ $\Rightarrow b = 3 \times 18^{\circ}$ $= 54^{\circ}$ Similarly MN is a straight line, OX is a ray from O $\therefore b + c = 180^{\circ}$ $54^{\circ} + c = 180^{\circ}$ $c = 180^{\circ} - 54^{\circ}$ $c = 126^{\circ}$

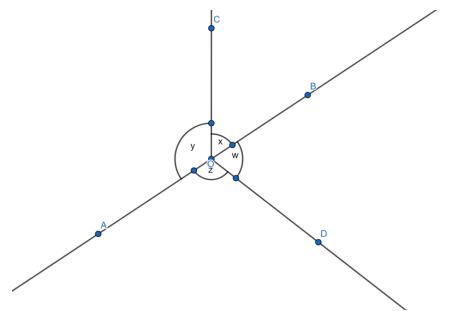
2.In the given figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.



Ans: ST is a straight line, QP is a line segment from Q in ST to any point P by Linear Pair property

 $\angle PQS + \angle PQR = 180^{\circ}$ $\Rightarrow \angle PQR = 180^{\circ} - \angle PQS$ (1) Similarly $\angle PRT + \angle PRQ = 180^{\circ}$ $\Rightarrow \angle PRQ = 180^{\circ} - \angle PRT$ (2) Now in the question it is given that $\angle PQR = \angle PRQ$ Therefore on equating equation (1) and (2) we get $180^{\circ} - \angle PQS = 180^{\circ} - \angle PRT$ $\Rightarrow \angle PQS = \angle PRT$ Hence proved

3.In the given figure, if x+y=w+z then prove that AOB is a line.



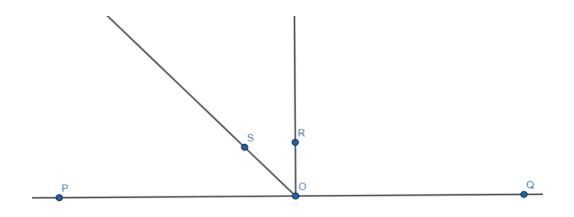
Ans: It can be observed that,

Since there are 360° around a point therefore we can write $x + y + z + w = 360^{\circ}$ It is given that, x+y=w+zTherefore writing x+y in place of w+z so that we can eliminate w and z, we get $x + y + x + y = 360^{\circ}$ $2(x + y) = 360^{\circ}$ $x + y = 180^{\circ}$ Since x and y form a linear pair, hence we can say that AOB is a line.

Since x and y form a linear pair, hence we can say that AOB is a line. Hence proved

4.In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle \text{ROS} = \frac{1}{2} (\angle \text{QOS} - \angle \text{POS})$$



Ans: Since $OR \perp PQ$ therefore $\angle POR=90^{\circ}$ $\angle POS + ROS = 90^{\circ}$ $\Rightarrow \angle ROS=90^{\circ} - \angle POS$ (1) Similarly $\angle QOR=90^{\circ}$ (Since OR^{PQ}) $\therefore \angle QOS - \angle ROS=90^{\circ}$ $\Rightarrow \angle ROS = \angle QOS - 90^{\circ}$ (2)

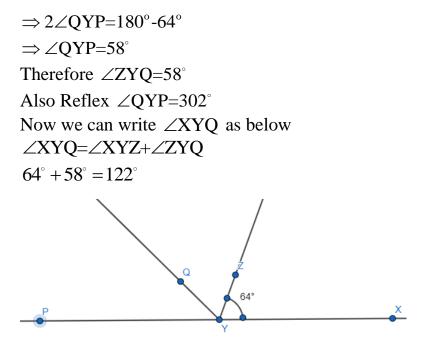
We can clearly see that on adding equation (1) and (2) 90° get canceled out $\Rightarrow 2\angle ROS = \angle QOS - \angle POS$ Which can easily be written as $\Rightarrow \angle ROS = \frac{1}{2} (\angle ROS - \angle POS)$

Hence proved

5.It is given that $\frac{\partial YZ}{\partial e^{-64^{\circ}}}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\frac{\partial ZYP}{\partial e^{-64^{\circ}}}$, find $\frac{\partial XYQ}{\partial e^{-64^{\circ}}}$ and reflex $\frac{\partial QYP}{\partial e^{-64^{\circ}}}$.

Ans: It is given that line YQ bisects \angle ZYP. Hence, \angle QYP= \angle ZYQ It can easily be understood that PX is a line, YQ and YZ being rays standing on it. \angle XYZ+ \angle ZYQ+ \angle QYP=180° From above relation \angle QYP= \angle ZYQ we can write

 $64^{\circ}+2\angle QYP=180^{\circ}$



Therefore we found $\angle XYQ=122^{\circ}$ and so the Reflex $\angle QYP=302^{\circ}$