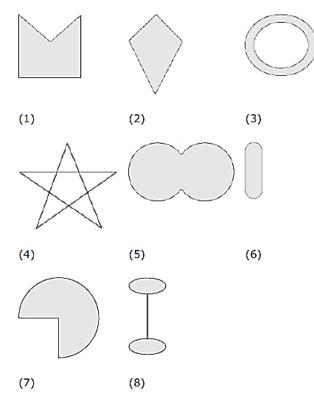


Exercise 3.1

1. Given here are some figures.



understanding quadril aterlas

Classify each of them on the basis of following.

a. Simple curve

Ans: Given: the figures (1) to (8)

We need to classify the given figures as simple curves.

We know that a curve that does not cross itself is referred to as a simple curve.

Therefore, simple curves are 1, 2, 5, 6, 7.

b. Simple closed curve

Ans: Given: the figures (1) to (8)

We need to classify the given figures as simple closed curves.

We know that a simple closed curve is one that begins and ends at the same point without crossing itself.

Therefore, simple closed curves are 1, 2, 5, 6, 7.

c. Polygon

Ans: Given: the figures (1) to (8)

We need to classify the given figures as polygon.

We know that any closed curve consisting of a set of sides joined in such a way that no two segments cross is known as a polygon.

Therefore, the polygons are 1, 2.

d. Convex polygon

Ans: Given: the figures (1) to (8)

We need to classify the given figures as convex polygon.

We know that a closed shape with no vertices pointing inward is called a convex polygon.

Therefore, the convex polygon is 2.

e. Concave polygon

Ans: Given: the figures (1) to (8)

We need to classify the given figures as concave polygon.

We know that a polygon with at least one interior angle greater than 180 degrees is called a concave polygon.

Therefore, the concave polygon is 1.

2. What is a regular polygon? State the name of a regular polygon of:

(i) 3 sides (ii) 4 sides (iii) 6 sides

Ans: A regular polygon is a polygon which has all its side equal and so all angles are equal.

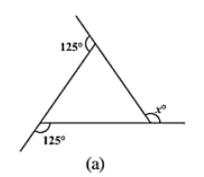
(i) 3sides: It is an equilateral triangle.

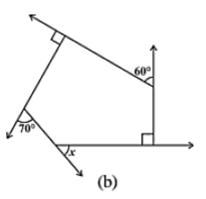
(ii) 4 sides: It is a square.

(iii) 6 sides: It is a hexagon.

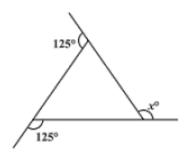
Exercise-3.2

1. Find in the following figures.

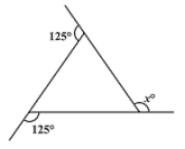




a.



Ans: Given:

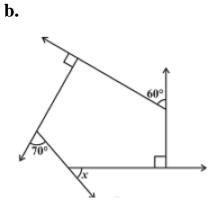


We need to find the value of x.

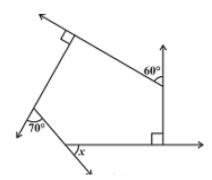
We know that the sum of all exterior angles of a polygon is 360°.

Thus.

$$x + 125^{\circ} + 125^{\circ} = 360^{\circ}$$
$$\Rightarrow x + 250^{\circ} = 360^{\circ}$$
$$\Rightarrow x = 360^{\circ} - 250^{\circ}$$
$$\Rightarrow x = 110^{\circ}$$



Ans: Given:



We need to find the value of x.

We know that the sum of all exterior angles of a polygon is 360°.

Thus,

$$x + 90^{\circ} + 60^{\circ} + 90^{\circ} + 70^{\circ} = 360^{\circ}$$
$$\Rightarrow x + 310^{\circ} = 360^{\circ}$$
$$\Rightarrow x = 360^{\circ} - 310^{\circ}$$
$$\Rightarrow x = 50^{\circ}$$

2. Find the measure of each exterior angle of a regular polygon of i. 9 sides

Ans: Given: a regular polygon with 9 sides

We need to find the measure of each exterior angle of the given polygon.

We know that all the exterior angles of a regular polygon are equal.

The sum of all exterior angle of a polygon is 360° .

Formula Used: Exterior angle = $\frac{360^{\circ}}{\text{Number of sides}}$

Therefore,

Sum of all angles of given regular polygon $= 360^{\circ}$

Number of sides =9

Therefore, measure of each exterior angle will be

 $=\frac{360^{\circ}}{9}$

 $=40^{\circ}$

ii. 15 sides

Ans:

Given: a regular polygon with 15 sides

We need to find the measure of each exterior angle of the given polygon.

We know that all the exterior angles of a regular polygon are equal.

The sum of all exterior angle of a polygon is 360° .

Therefore,

Sum of all angles of given regular polygon $= 360^{\circ}$

Number of sides =15

Formula Used: Exterior angle = $\frac{360^{\circ}}{\text{Number of sides}}$

Therefore, measure of each exterior angle will be

```
=\frac{360^{\circ}}{15}=24^{\circ}
```

3. How many sides does a regular polygon have if the measure of an exterior angle is 24°?

Ans: Given: A regular polygon with each exterior angle 24°

We need to find the number of sides of given polygon.

We know that sum of all exterior angle of a polygon is 360° .

Formula Used: Number of sides = $\frac{360^{\circ}}{\text{Exterior angle}}$

Thus,

Sum of all angles of given regular polygon $= 360^{\circ}$

Each angle measure $= 24^{\circ}$

Therefore, number of sides of given polygon will be

 $=\frac{360^{\circ}}{24^{\circ}}$ $=15^{\circ}$

4. How many sides does a regular polygon have if each of its interior angles is 165°?

Ans: Given: A regular polygon with each interior angle 165°

We need to find the sides of the given regular polygon.

We know that sum of all exterior angle of a polygon is 360° .

Formula Used: Number of sides = $\frac{360^{\circ}}{\text{Exterior angle}}$

Exterior angle = 180° – Interior angle

Thus,

Each interior angle $=165^{\circ}$

So, measure of each exterior angle will be

 $=180^{\circ} - 165^{\circ}$

=15°

Therefore, number of sides of polygon will be

 $=\frac{360^{\circ}}{15^{\circ}}$

5. (a) Is it possible to have a regular polygon with measure of each exterior angle as 22°?

Ans: Given: A regular polygon with each exterior angle 22°

We need to find if it is possible to have a regular polygon with given angle measure.

We know that sum of all exterior angle of a polygon is 360° . The polygon will be possible if 360° is a perfect multiple of exterior angle.

Thus.

```
\frac{360^{\circ}}{22^{\circ}} does not give a perfect quotient.
```

Thus, 360° is not a perfect multiple of exterior angle. So, the polygon will not be possible.

(b) Can it be an interior angle of a regular polygon? Why?

Ans: Given: Interior angle of a regular polygon $= 22^{\circ}$

We need to state if it can be the interior angle of a regular polygon.

We know that sum of all exterior angle of a polygon is 360°. The polygon will be possible if 360° is a perfect multiple of exterior angle.

And, Exterior angle = 180° – Interior angle

Thus, Exterior angle will be

 $=180^{\circ} - 22^{\circ}$

=158°

 $\frac{158^{\circ}}{22^{\circ}}$ does not give a perfect quotient.

Thus, 158° is not a perfect multiple of exterior angle. So, the polygon will not be possible.

= 24

6. (a) What is the minimum interior angle possible for a regular polygon?

Ans: Given: A regular polygon

We need to find the minimum interior angle possible for a regular polygon.

A polygon with minimum number of sides is an equilateral triangle.

So, number of sides =3

We know that sum of all exterior angle of a polygon is 360° .

And,

Exterior angle = $\frac{360^{\circ}}{\text{Number of sides}}$

Thus, Maximum Exterior angle will be

 $=\frac{360^{\circ}}{3}$ $=120^{\circ}$

We know, Interior angle = 180° – Exterior angle

Therefore, minimum interior angle will be

 $=180^{\circ} - 120^{\circ}$

= 60°

(b) What is the maximum exterior angel possible for a regular polygon?

Ans: Given: A regular polygon

We need to find the maximum exterior angle possible for a regular polygon.

A polygon with minimum number of sides is an equilateral triangle.

So, number of sides =3

We know that sum of all exterior angle of a polygon is 360° .

And,

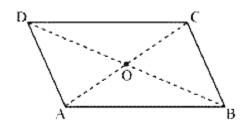
Exterior angle = $\frac{360^{\circ}}{\text{Number of sides}}$

Therefore, Maximum Exterior angle possible will be

$$=\frac{360^{\circ}}{3}$$
$$=120^{\circ}$$

Exercise 3.3

1. Given a parallelogram ABCD. Complete each statement along with the definition or property used.



i. AD=...

Ans: Given: A parallelogram ABCD

We need to complete each statement along with the definition or property used.

We know that opposite sides of a parallelogram are equal.

Hence, AD = BC

ii. ∠DCB = ...

Ans: Given: A parallelogram ABCD

We need to complete each statement along with the definition or property used. ABCD is a parallelogram, and we know that opposite angles of a parallelogram are equal.

Hence, $\angle DCB = \angle DAB$

iii. OC = ...

Ans: Given: A parallelogram ABCD.

We need to complete each statement along with the definition or property used.

ABCD is a parallelogram, and we know that diagonals of parallelogram bisect each other.

Hence, OC = OA

iv. $m \angle DAB + m \angle CDA = \dots$

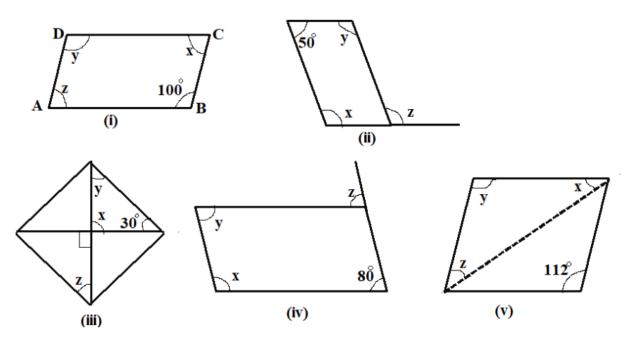
Ans: Given: A parallelogram ABCD.

We need to complete each statement along with the definition or property used.

ABCD is a parallelogram, and we know that adjacent angles of a parallelogram are supplementary to each other.

Hence, $m \angle DAB + m \angle CDA = 180^{\circ}$

2. Consider the following parallelograms. Find the values of the unknowns x, y, z.



(i)

Ans: Given: A parallelogram ABCD

We need to find the unknowns x,y,z

The adjacent angles of a parallelogram are supplementary.

```
Therefore, x+100^{\circ} = 180^{\circ}
```

 $x=80^{\circ}$

Also, the opposite angles of a parallelogram are equal.

```
Hence, z = x = 80^{\circ} and y = 100^{\circ}
```

(ii)

Ans: Given: A parallelogram.

We need to find the values of x,y,z

The adjacent pairs of a parallelogram are supplementary.

Hence, $50^{\circ} + y = 180^{\circ}$

 $y = 130^{\circ}$

Also, $x = y = 130^{\circ}$ (opposite angles of a parallelogram are equal)

And, $z = x = 130^{\circ}$ (corresponding angles)

(iii)

Ans: Given: A parallelogram

We need to find the values of x,y,z

 $x = 90^{\circ}$ (Vertically opposite angles)

Also, by angle sum property of triangles

 $x + y + 30^{\circ} = 180^{\circ}$

 $y = 60^{\circ}$

Also, $z = y = 60^{\circ}$ (alternate interior angles)

(iv) Ans:

Given: A parallelogram

We need to find the values of x, y, z

Corresponding angles between two parallel lines are equal.

Hence, $z = 80^{\circ}$ Also, $y = 80^{\circ}$ (opposite angles of parallelogram are equal) In a parallelogram, adjacent angles are supplementary Hence, $x + y = 180^{\circ}$

 $\mathbf{Hence}, \mathbf{x} + \mathbf{y} = \mathbf{R}$

 $x = 180^{\circ} - 80^{\circ}$

$$x = 100^{\circ}$$

v.

Ans: Given: A parallelogram

We need to find the values of x,y,z

As the opposite angles of a parallelogram are equal, therefore, $y = 112^{\circ}$

Also, by using angle sum property of triangles

 $x + y + 40^{\circ} = 180^{\circ}$ $x + 152^{\circ} = 180^{\circ}$ $x = 28^{\circ}$ And $z = x = 28^{\circ}$ (alternate interior angles)

3. Can a quadrilateral ABCD be a parallelogram if

(i) $\angle D + \angle B = 180^{\circ}$?

Ans: Given: A quadrilateral ABCD

We need to find whether the given quadrilateral is a parallelogram.

For the given condition, quadrilateral ABCD may or may not be a parallelogram.

For a quadrilateral to be parallelogram, the sum of measures of adjacent angles should be 180° and the opposite angles should be of same measures.

(ii) AB = DC = 8 cm, AD = 4 cm and BC = 4.4 cm

Ans: Given: A quadrilateral ABCD

We need to find whether the given quadrilateral is a parallelogram.

As, the opposite sides AD and BC are of different lengths, hence the given quadrilateral is not a parallelogram.

(iii) $\angle A = 70^{\circ}$ and $\angle C = 65^{\circ}$

Ans: Given: A quadrilateral ABCD

We need to find whether the given quadrilateral is a parallelogram.

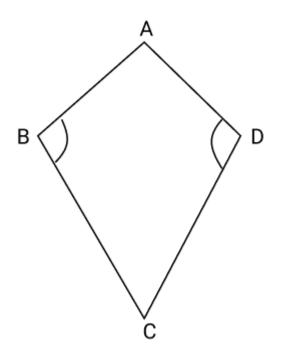
As, the opposite angles have different measures, hence, the given quadrilateral is a parallelogram.

4. Draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

Ans: Given: A quadrilateral.

We need to draw a rough figure of a quadrilateral that is not a parallelogram but has exactly two opposite angles of equal measure.

A kite is a figure which has two of its interior angles, $\angle B$ and $\angle D$ of same measures. But the quadrilateral ABCD is not a parallelogram as the measures of the remaining pair of opposite angles are not equal.



5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.

Ans: Given: A parallelogram with adjacent angles in the ratio 3:2

We need to find the measure of each of the angles of the parallelogram.

Let the angles be $\angle A = 3x$ and $\angle B = 2x$

As the sum of measures of adjacent angles is 180° for a parallelogram.

 $\angle A + \angle B = 180^{\circ}$ $3x + 2x = 180^{\circ}$ $5x = 180^{\circ}$ $x = 36^{\circ}$ $\angle A = \angle C = 3x = 108^{\circ}$ and $\angle B = \angle D = 2x = 72^{\circ}$ (Opposite angles of a parallelogram are equal).

Hence, the angles of a parallelogram are $108^{\circ}, 72^{\circ}, 108^{\circ}$ and 72° .

6. Two adjacent angles of a parallelogram have equal measure. Find the measure of each of the angles of the parallelogram.

Ans: Given: A parallelogram with two equal adjacent angles.

We need to find the measure of each of the angles of the parallelogram.

The sum of adjacent angles of a parallelogram are supplementary.

 $\angle A + \angle B = 180^{\circ}$ $2\angle A = 180^{\circ}$

 $\angle A = 90^{\circ}$

 $\angle B = \angle A = 90^{\circ}$

Also, opposite angles of a parallelogram are equal

Therefore,

$$\angle C = \angle A = 90^{\circ}$$
$$\angle D = \angle B = 90^{\circ}$$

Hence, each angle of the parallelogram measures 90° .

7. The adjacent figure HOPE is a parallelogram. Find the angle measures x, y and z. State the properties you use to find them.

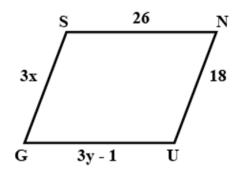
Ans: Given: A parallelogram HOPE.

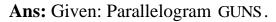
We need to find the measures of angles x,y,z and also state the properties used to find these angles.

 $\angle y = 40^{\circ}$ (Alternate interior angles) And $\angle z + 40^{\circ} = 70^{\circ}$ (corresponding angles are equal) $\angle z = 30^{\circ}$ Also, $x + z + 40^{\circ} = 180^{\circ}$ (adjacent pair of angles) $x = 110^{\circ}$

8. The following figures GUNS and RUNS are parallelograms. Find x and y. (Lengths are in cm).

(i)

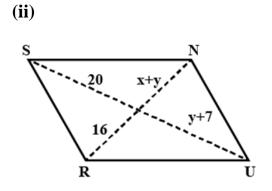




We need to find the measures of x and y.

GU = SN (Opposite sides of a parallelogram are equal).

3y - 1 = 26 3y = 27 y = 9Also, SG = NU Therefore, 3x = 18x = 3



Ans: Given: Parallelogram RUNS

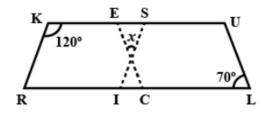
We need to find the value of x and y.

The diagonals of a parallelogram bisect each other, therefore,

$$y + 7 = 20$$

 $y = 13$
 $x + y = 16$
 $x + 13 = 16$
 $x = 3$

9. In the above figure both RISK and CLUE are parallelograms. Find the value of **x**.



Ans: Given: Parallelograms RISK and CLUE

We need to find the value of x.

As we know that the adjacent angles of a parallelogram are supplementary, therefore,

In parallelogram RISK

 $\angle RKS + \angle ISK = 180^{\circ}$

 $120^{\circ} + \angle ISK = 180^{\circ}$

As the opposite angles of a parallelogram are equal, therefore,

In parallelogram CLUE,

 $\angle ULC = \angle CEU = 70^{\circ}$

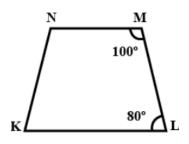
Also, the sum of all the interior angles of a triangle is 180°

Therefore,

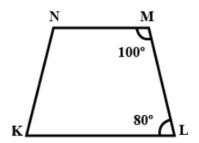
$$x + 60^{\circ} + 70^{\circ} = 180^{\circ}$$

 $x = 50^{\circ}$

10. Explain how this figure is a trapezium. Which of its two sides are parallel?



Ans: Given:



We need to explain how the given figure is a trapezium and find its two sides that are parallel.

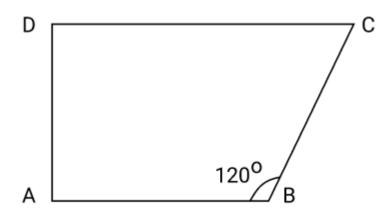
If a transversal line intersects two specified lines in such a way that the sum of the angles on the same side of the transversal equals 180° , the two lines will be parallel to each other.

Here, $\angle NML = \angle MLK = 180^{\circ}$

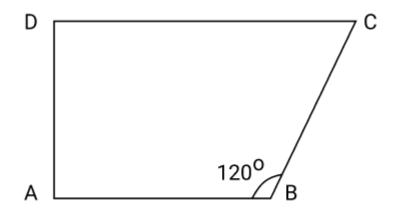
Hence, NM || LK

Hence, the given figure is a trapezium.

11. Find $m \angle C$ in the following figure if $AB \parallel CD$.



Ans: Given: AB || CD and quadrilateral



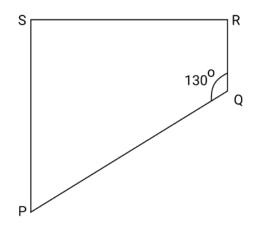
We need to find the measure of $\angle C$

 $\angle B + \angle C = 180^{\circ}$ (Angles on the same side of transversal).

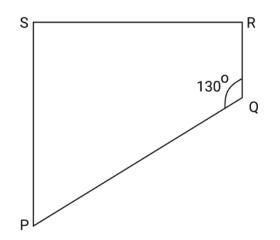
 $120^{\circ} + \angle C = 180^{\circ}$

 $\angle C = 60^{\circ}$

12. Find the measure of $\angle P$ and $\angle S$, if $SP \parallel RQ$ in the following figure. (If you find $m \angle R$, is there more than one method to find $m \angle P$?)



Ans: Given: SP||RQ and



We need to find the measure of $\angle P$ and $\angle S$.

The sum of angles on the same side of transversal is 180°.

 $\angle P + \angle Q = 180^{\circ}$ $\angle P + 130^{\circ} = 180^{\circ}$ $\angle P = 50^{\circ}$ Also, $\angle R + \angle S = 180^{\circ}$ $90^{\circ} + \angle S = 180^{\circ}$ $\angle S = 90^{\circ}$

Yes, we can find the measure of $m \angle P$ by using one more method.

In the question, $m \angle R$ and $m \angle Q$ are given. After finding $m \angle S$ we can find $m \angle P$ by using angle sum property.

Exercise-3.4

- 1: State whether True or False.
- (a) All rectangles are squares.
- (b) All rhombuses are parallelograms.
- (c) All squares are rhombuses and also rectangles.
- (d) All squares are not parallelograms.
- (e) All kites are rhombuses.
- (f) All rhombuses are kites.
- (g) All parallelograms are trapeziums.
- (h) All squares are trapeziums.

Ans: (a) False. All squares are rectangles but all rectangles are not squares.

(b) True. Opposite sides of a rhombus are equal and parallel to each other.

(c) True. All squares are rhombuses as all sides of a square are of equal lengths. All squares are also rectangles as each internal angle measures⁹90

- (d) False. All squares are parallelograms as opposite sides are equal and parallel.
- (e) False. A kite does not have all sides of the same length.
- (f) True. A rhombus also has two distinct consecutive pairs of sides of equal length.
- (g) True. All parallelograms have a pair of parallel sides.
- (h) True. All squares have a pair of parallel sides.

2: Identify all the quadrilaterals that have

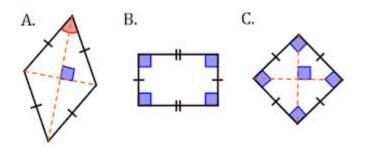
(a) four sides of equal length

(b) four right angles

Ans: In geometry, a quadrilateral can be defined as a closed, two-dimensional shape that has four straight sides.

Fig A shows Rhombus, B shows a rectangle, C shows a square.

- (a) Quadrilaterals that have four sides of equal length are Rhombus and squares.
- (b) Quadrilaterals that have four right angles are Rectangle and squares.



3: Explain how a square is.

(i) a quadrilateral (ii) a parallelogram (iii) a rhombus (iv) a rectangle.

Ans: (i) a quadrilateral

Solution A square is a quadrilateral, as it has four equal sides.

(ii) a parallelogram

Solution A square is a parallelogram, as it contains the pairs of opposite sides equal.

(iii) a rhombus

Solution A square is a rhombus, as it has four equal sides and diagonals bisect at 900.

(iv) a rectangle

Solution A square is a rectangle, as it has each adjacent angle at 90⁰ and opposite sides are equal.

4: Name the quadrilaterals whose diagonals.

(i) bisect each other (ii) are perpendicular bisectors of each other (iii) are equal

Ans: (i) Bisects each other: Diagonals of a parallelogram, rhombus, square and rectangle.

(ii) Are perpendicular bisectors of each other: Diagonals of rhombus and square \rightarrow

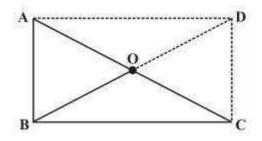
perpendicular bisectors.

(iii) Are equal: Diagonals of rectangle and square are equal.

5: Explain why a rectangle is a convex quadrilateral.

Ans: In a rectangle, there are two diagonals, both lying in the interior of the rectangle. Hence, it is a convex quadrilateral.

6: ABC is a right-angled triangle and O is the midpoint of the side opposite to the right angle. Explain why O is equidistant from A, B, and C. (The dotted lines are drawn additionally to help you).



Ans: Correct option is A)

Between \triangle AOD & \triangle BOC we have AO=CO (given),BO=OD (by Construction).

 \angle AOD = \angle BOC....Vertically opposite angle

 \therefore By SAS test \triangle AOD & \triangle BOC are congruent.

So AD=BC....(i)

similarly, between \triangle AOB & \triangle DOC we have AO=CO (given), BO=OD (by Construction)

 $\angle AOB = \angle DOC$

 \therefore By SAS test \triangle AOB & \triangle DOC are congruent.

So AB=DC.....(ii)

Also \angle ABC=900....(iii)

 \therefore From (i) & (ii) & (iii) we conclude that ABCD is a rectangle.

So the diagonals AC & BD are equal and bisect each other at O.

∴ OA=OB=OC=OD.

i.e O is equidistant from A, B & C.