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Exercise 1.1 

1. Determine whether each of the following relations are reflexive, 
symmetric and transitive. 

i. Relation R in the set A = 1, 2, 3...13, 14defined as 

R = x, y: 3x - y = 0

Ans: The given relation is: 

 
R = 1, 3, 2, 6, 3, 9, 

 
4, 12



Since 1, 1, 2, 2 ... and 14, 14R . 

We conclude that R is not reflexive. 

Since 1, 3R , but 3, 1R . [since 33-1  0] 

We conclude that R does not belong to symmetric. 

Since 1, 3 and 3, 9R , but1, 9R. 

We conclude that R is not transitive. 

31-9  0 . 

 

Therefore, the relation R is not reflexive, symmetric or transitive. 
 

ii. Relation R in the set N of natural numbers defined as 

R = {x, y: y = x + 5 and x<4} 
 

Ans: The given relation is: 
 

Since 1, 1R . 

R = 1, 6, 2, 7, 3, 8. 

 

We conclude that R is not reflexive. 

Relations and Functions
1

Chapter



 CLASS – XII_MATHS                                                            NCERT SOLUTIONS   

2 

 

 

 

Since 1, 6R but 6, 1R . 
 

We conclude that R does not belong to symmetric. 

In the given relation R there is not any ordered pair such that x, y
both R , therefore we can say that x, z cannot belong to R . 

Therefore R is not transitive. 

Hence, the given relation R is not reflexive, symmetric or transitive. 

 
and  y, z




iii. Relation R in the set A = {1, 2, 3, 4, 5, 6} as 

x} 

R= {x, y: y is divisible by 

 

Ans: The given relation is R = {x, y : y is divisible by x} 
 

As we know that any number except 0 is divisible by itself, therefore x, xR 

We conclude that R is reflexive. 

Since 2, 4R 

divisible by 4 ]. 

[because 4 is divisible by 2 ], but 4, 2R [since 2 is not 

 

We conclude that R does not belong to symmetric. 

Assuming that x, y and y, zR , y is divisible by x and z is divisible by y 

Hence z is divisible by x  x, zR . 
 

We conclude that R is transitive. 

Hence, the given relation R is reflexive and transitive but it does not belong to 
symmetric. 

 
 

iv. Relation R in the set Z of all integers defined as 

integer 

R = {x, y: x - y} is as 

Ans: The given relation is R = {x, y: x - y is an integer} 
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If xZ, x, xR because x-x = 0 is an integer. 
 

Hence, we conclude that R is reflexive. 

For x, yZ, if x, yR , then x - y is an integer and therefore y-x is also an 

integer. 

Therefore, we conclude that y, xR and hence R is symmetric. 
 

Assuming that x, y

We can say that x-y

and y, zR , where x, y, zZ. 

and  y-z are integers. 

Therefore x-z = (x-y) + (y-z) is also an integer, so, x, zR 
 

Hence, we conclude that R is transitive. 

Therefore the given relation R is reflexive, symmetric, and transitive. 
 

v. Relation R in the set A of human beings in a town at a particular time 
given by 

a) The relation is: R = {x, y: x and y work at the same place} 
 

Ans: The given relation is: R = {x, y: x and y work at the same place} 
 

This implies that x, yR . 

Hence, we conclude that R is reflexive. 

Now, x, yR , then x and y work at the same place, which means y and x 

also work at the same place. Therefore, y, xR . 

Hence, we conclude that R is symmetric. 

Let us assume that x, y, y, zR . 
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Then, we can say that x and y work at the same place and y and z work at the 

same place. Which means that x and z also work at the same place. 

Therefore, x, zR . 

Hence, we conclude that R is transitive. 

Therefore, the given relation R is reflexive, symmetric and transitive. 
 
 

b) The relation is: R = {x, y: x and y live in the same locality} 
 

Ans: The given relation is 

Since, x, xR . 

R = {x, y: x and y live in the same locality} 

 

Therefore, we conclude that R is reflexive. 

Since x, yR , x and y live in the same locality. Therefore, y and x also live 

in the same locality, so, y, xR . 

Hence, R is symmetric. 

Let x, yR and y, zR . Hence x and y live in the same locality and y and 

z also live in the same locality. Which means that x and z also live in the same 
locality. 

Therefore, x, zR . 

Hence, we conclude that R is transitive. 

Therefore, the given relation R is reflexive, symmetric and transitive. 
 
 

c) R = {x, y: x is exactly 7 cm taller than y} 
 

Ans: The given relation is: 

Since, x, xR . 
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R = {x, y: x is exactly 7 
cm taller than y}  

 

Therefore, we conclude that R not is reflexive. 

Let x, yR , Since x is exactly 7 cm taller than y , therefore y is obviously 

not taller than x , so, y, xR . 

Hence, R is not symmetric. 

Assuming that x, y, y, zR , we can say that x is exactly 7 cm taller than 

y and y is exactly 7 cm taller than z . Which means that x is exactly 14 cm 

taller than z. So, x, zR . 

Hence, R is not transitive. 

Therefore, the given relation R is not reflexive, symmetric or transitive. 
 
d) R = {x, y: x is wife of y} 

 

Ans: The given relation is: 

Since, x, xR 

R = {x, y: x is the wife of y} . 

 

Therefore, we conclude that R not is reflexive. 

Let x, yR , Since x is the wife of y , therefore y is obviously not the wife 

of x , so, y, xR . 

Hence, R is not symmetric. 

Assuming that x, y, y, zR , we can say that x is the wife of y and y is the 

wife of z, which is not possible. So, x, zR . 

Hence, R is not transitive. 

Therefore the given relation R is not reflexive, symmetric or transitive. 
 
 

e) R = {x, y: x is father of y} 
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Ans: The given relation is: 

Since, x, xR 

R = {x, y: x is the father of y} 

 

Therefore, we conclude that R not is reflexive. 

Let x, yR , Since x is the father of y , therefore y is obviously not the father 

of x , so, y, xR . 

Hence, R is not symmetric. 

Assuming that x, y, y, zR , we can say that x is the father of y and y is 

the father of z, then x is not the father of z . So, x, zR . 

Hence, R is not transitive. 

Therefore the given relation R is not reflexive, symmetric or transitive. 
 
 
2. Show that the relation R in the set R of real numbers, defined 

R = a, b: a  b2 is neither reflexive nor symmetric nor transitive. 
 

Ans: The given relation is: R = a, b: a  b2
Since  

1 
, 

1 R . [Since 
1 

is not less than 
1 

]  2 4  2 4 
 

Therefore, R is not reflexive. 
 

Since 1, 4R as 1<42 , but 4, 1R as 42 is not less than 12 . 
 

Therefore R is not symmetric. 

Assuming that 3, 2, 2, 1.5R , so, 

3>1.52 
=2.25 . 

Hence, R is not transitive. 

 
 
3<22 =4 and 

 
2<1.52 

=2.25 but 

Therefore, the given relation R is neither reflexive, nor symmetric, nor transitive. 
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3. Check whether the relation R defined in the set 1, 2, 3, 4, 5, 6 as 

R = a, b: b=a+1 is reflexive, symmetric or transitive. 
 
Ans: The given relation is 

A=1, 2, 3, 4, 5, 6 . 
R = a, b: b=a+1


defined in the set 

 
So, R=1, 2, 2, 3, 3, 4, 4, 5, 5, 6



Since, a, aR,aA . 
 

1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6R 
 

Therefore, R is not reflexive 

Since, 1, 2R , but 2, 1R . 

Therefore R is not symmetric. 

Since 1, 2, 2, 3R , but 1, 3R . 

Hence, R is not transitive. 

Therefore, the given relation R is neither reflexive, nor symmetric, nor transitive. 
 
 
 

4. Show that the relation R in R defined as 

and transitive but not symmetric. 

R = a, b: a  b is reflexive 

Ans: The given relation is 
 

Since, a, aR. 

Therefore, R is reflexive. 

R = a, b: a  b. 

Since, 2, 4R (as 2<4), but 4, 2R(as 4>2). 

Therefore R is not symmetric. 
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Assuming that a, b, b, cR, a  b and b  c , therefore, ac . 
 

Hence, R is transitive. 

Therefore, the given relation R is reflexive and transitive but not symmetric. 
 
  
5. Check whether the relation R in R defined as 

reflexive, symmetric or transitive. 

R = a, b: a  b3 is 

Ans: The given relation is: R = a, b: a  b3


Since  
1 

, 
1 R . [Since 

1 
is not less than 

1 
] 

 2 8  2 8 
 

Therefore, R is not reflexive. 

Since 1, 4R as 1<43 , but 4, 1R as 4 is not less than 13 . 
 

Therefore R is not symmetric. 
 

 3   3 6   3 
3
 3  6 

3
  6 

3
 

Assuming that  3, 
2 

,  , R , so, 3<  and <  but 3>  . 
   2 5 

Hence, R is not transitive. 

 2  2  5   5 



Therefore, the given relation R is neither reflexive, nor symmetric, nor transitive. 
 
  

6. Show that the relation R in the set 1, 2, 3given by R = 1, 2, 2, 1
is symmetric but neither reflexive nor transitive. 

 
Ans: The given relation is R = 1, 2, 2, 1 on the set A=1, 2, 3. 

 

Since 1, 1, 2, 2, 3, 3R 
 

Therefore, R is not reflexive. 
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Since, 1, 2R and 2, 1R. 

Therefore R is symmetric. 

Since, 1, 2R and 2, 1R, but 1, 1R . 

Hence, R is not transitive. 

Therefore, the given relation R is symmetric but neither reflexive nor transitive. 
 
 
7. Show that the relation R in the set A of all the books in a library of a 

college, given by R = {x, y : x and y have same number of pages } is an 

equivalence relation. 

Ans: The given relation is: 

 
R = {x, y: x 

 
 
and y have the same number of pages} 

 

Since x, xR as x and x have same number of pages. 
 

Therefore, R is reflexive. 

Let x, yR , so x and y have the same number of pages, therefore y and x 

will also have the same number of pages. 

Therefore R is symmetric. 

Assuming x, yR and y, zR . x and y have the same number of pages and 

y and z also have the same number of pages. Therefore, x and z will also have 

the same number of pages. So, x, zR. 

Hence, R is transitive. 

Therefore, the given relation R is an equivalence relation. 
  
 

8. Show that the relation R in the set A=1, 2, 3, 4, 5 given by 

R = {a, b: a-b is even}, is an equivalence relation. Show that all the 
 

 

elements of 1, 3, 5 are related to each other and all the elements of 2, 4
are related to each other. But no element of 1, 3, 5 is related to any 

element of 2, 4 . 
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Ans: Let aA, 

So, a-a = 0 (which is an even number). 

Therefore, R is reflexive. 

Let a, bR , 
 

Now, a-b is even, 
 

Hence a-b and b-a are both even 
 

Therefore, b, aR 

Therefore R is symmetric. 

Let a, bR and b, cR , 

 a-b is even and b-c is even 
 

 a-b is even and b-c is even 
 

 a-c = a-b + b-c is even 
 

 a-c is even. 
 

 a, cR 

Therefore, R is transitive. 

Therefore, the given relation R is an equivalence relation. 

All the elements of set 1, 3, 5 are all odd. Hence, the modulus of the difference 

of any two elements will be an even number. So, all the elements of this set are 
related to each other. 
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All elements of 2, 4 are even while all the element of 1, 3, 5 are odd so no 

element of 1, 3, 5 can be related to any element of2, 4. 

Therefore, the absolute value of the difference between the two elements (from 
each of these two subsets) will not be an even value. 

 
 
 

9. Show that each of the relation R in the set A = {xZ: 0  x  12} , is an 

equivalence relation. Find the set of all elements related to 1 in each case. 

i. R = {a, b : a – b is a multiple of 4} 
 

Ans: The given set 

A = {xZ: 0  x 12} = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


The given relation is: 
 

Let aA, 

R = {a, b : a – b is a multiple of 4}. 

a, aR as 

Therefore, R 

a-a =0 is a multiple of 4 . 

is reflexive. 

Let, a, bR  a-b is a multiple of 4 . 
 

 -a-b = b-a 

 b, aR 

is a multiple of 4 . 

 

Therefore R is symmetric. 

a, b, 

 a-b 

b, cR. 

is a multiple of 4 and b-c is a multiple of 4 . 
 

 a-b is a multiple of 4 and b-cis a multiple of 4 . 
 

a-c=a-b+b-c is a multiple of 4 . 
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 a-c is a multiple of 4 . 
 

 a, cR 

Therefore, R is transitive. 

Therefore, the given relation R is an equivalence relation. 

The set of elements related to 1 is 1, 5, 9 as 

1-1  0 is a multiple of 4 .. 

5-1  0 is a multiple of 4 .. 
 

9-1  0 is a multiple of 4 . 
 
 

ii. R = a, b : a = b

Ans: The given relation is: R = a, b : a = b. 

 

aA,a, aR , since a = a . 

Therefore, R is reflexive. 

Let a, bR  a=b. 

b=a  b, aR 

Therefore R is symmetric. 

a, b, 

 a=b 

 a=c 

b, cR 

and b=c 

 a, cR 

Therefore, R is transitive. 
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Therefore, the given relation R is an equivalence relation. 

The set of elements related to 1 is 1. 

 
10. Given an example of a relation. Which is 

i. Symmetric but neither reflexive nor transitive. 
 
Ans: Let us assume the relation R= 5, 6, 6, 5 in set A= 5, 6, 7 . 

 

So, the relation R is not reflexive as 5, 5, 6, 6, 7, 7R . 

The relation R is symmetric as 5, 6R and 6, 5R . 

The relation R is not transitive as 5, 6, 6, 5R , but 5, 5R . 

Therefore, the given relation R is symmetric but not reflexive or transitive. 

 
ii. Transitive but neither reflexive nor symmetric. 

 
Ans: Let us assume the relation R = a, b : a < b



So, the relation R is not reflexive because for aR, a, aR 

strictly less than itself. 
 

Let  

Since 2 is not less than 1, 2, 1R . 

Therefore R not is symmetric. 

since a cannot be 

Let a, b, b, cR. 
 

 a<b 

a<c 

and b<c 
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 a, cR 

Therefore, R is transitive. 

So, the relation R is transitive but not reflexive and symmetric. 
 

iii. Reflexive and symmetric but not transitive. 

Ans: Let us assume the relation 

R 4, 4, 6, 6, 8, 8, 4, 6, 6, 4, 6, 8, 8, 6 in set A= 4, 6, 8 . 
 

The relation R is reflexive since for aR, a, aR. 

The relation R is symmetric since a, bR  b, aR for a,bR . 
 

The relation R is not transitive since 4, 6, 6, 8R , but 4, 8R . 
 

Therefore the relation R is reflexive and symmetric but not transitive. 
 

iv. Reflexive and transitive but not symmetric. 
 
Ans: Let us take the relation 

 

Since a, bR . 

Therefore R is reflexive. 

R = a, b : a3  b3. 

Since 2, 1R , but 1, 2R , 

Therefore R not is symmetric. 

Let . 

 a3  b3 

 a3  c3 

and b3  c3 
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 a, cR 

Therefore R is transitive. 

Therefore the relation R is reflexive and transitive but not symmetric. 
 

v. Symmetric and transitive but not reflexive. 
 
Ans: Let us take a relation R=-5, -6, -6, -5, -5, -5 in set A=-5, -6 . 

 

The relation R is not reflexive as -6, -6R . 
 

Since -5, -6R and -6, -5R . 
 

Therefore R is symmetric. 

Since -5, -6, -6, -5R 

Therefore R is transitive. 

 
and -5, -5R . 

Therefore the relation R is symmetric and transitive but not reflexive. 
 
 
11. Show that the relation R in the set A of points in a plane given by 

R = {P, Q : Distance of the point P from the origin is same as the 

distance of the point Q from the origin}, is an equivalence relation. 

Further, show that the set of all point related to a point 

circle passing through P with origin as centre. 

P  0, 0 is the 

Ans: The given relation is R = {P, Q : Distance of P from the origin is the 

same as the distance of Q from the origin} 

Since, P, PR . 

The relation R is reflexive. 
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Let P, QR , distance of P from the origin is the same as the distance of Q 

from the origin similarly distance of Q from the origin will be the same as the 

distance of P from the origin. So, Q, PR . 

Therefore R is symmetric. 

Let P, Q,Q, SR . 

Distance of P from the origin is the same as the distance of Q from the origin 

and distance of Q from the origin is the same as the distance of S from the origin. 

So, distance of S from the origin will be same as the distance of P from the 

origin. So, P, SR . 

Therefore R is transitive. 

Therefore the relation R is an equivalence relation. 

The set of points related to P  0, 0will be those points whose distance from 

origin is same as distance of P from the origin and will form a circle with the 
centre as origin and this circle passes through P . 

 
 
12. Show that the relation R defined in the set A of all triangles as 

R = {T1, T2  : T1 is similar to T2 } , is equivalence relation. Consider 

three right angle triangles T1 with sides 3, 4, 5 and T2 with sides 

5, 12, 13 and T3 with sides 6, 8, 10. Which triangles among T1 , T2 and 

T3 are related? 
 

Ans: The given relation is R = {T1, T2  : T1 is similar to T2}. 
 

The relation R is reflexive since every triangle is similar to itself. 

If T1, T2 R , then T1 is similar to T2 . 
 

 T2 is similar to T1 . 
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 T2 , T1 R 

Therefore R is symmetric. 

Let T1, T2 ,T2 , T3 R . 

 T1 is similar to T2 and T2 is similar to T3 . 
 

 T1 is similar to T3 . 

T1, T3 R 

Therefore R is transitive. 

Therefore the relation R is an equivalence relation. 
 

3 4 5  1 
= = = 

6 8 10  2 


Since, the corresponding sides of triangles T1 and T3 are in the same ratio, 

therefore triangle T1 is similar to triangle T3 . 
 

Hence, T1 is related to T3 . 
 
 
 

13. Show that the relation R defined in the set A of all polygons as 

R = {P1, P2 : P1 and P2 have same number of sides}, is an equivalence 

relation. What is the set of all elements in A related to the right angle 
triangle T with sides 3, 4 and 5 ? 

Ans: R = {P1, P2 : P1 and P2 have same number of sides}. 
 

Since P1, P1 R , as same polygon has same number of sides. 
 

The relation R is reflexive. 

Let P1, P2 R  . 
 

 P1 and P2 have same number of sides. 
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 P2 

 
and P1 have same number of sides. 

 P2 , P1 R 

Therefore R is symmetric. 

Let P1, P2 ,P2 , P3 R . 

 P1 and P2 have same number of sides. 
 

 P2 and P3 have same number of sides. 
 

 P1 and P3 have same number of sides. 

 P1, P3 R 

Therefore R is transitive. 

Therefore the relation R is an equivalence relation. 

The elements in A related to right-angled triangle T
the polygons having 3 sides. 

 
 
 
 
 

with sides 3, 4 and 5 are 

 
 
 

14. Let L be the set of all lines in XY plane and R be the relation in L 

defined as R = {L1, L2 : L1 is parallel to L2 }. Show  that R is an 

equivalence relation. Find the set of all lines related to the line y=2x+4 . 
 

Ans: R = {L1, L2 : L1 is parallel to L2}. 
 

The relation R is reflexive as any line 

Let L1, L2 R . 

L1  is parallel to itself, so, L1, L1 R . 

 

 L1 is parallel to L2 , therefore L2 is parallel to L1 . 

 L2 , L1 R 

Therefore R is symmetric. 
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Let L1, L2 ,L2 , L1 R . 
 

 L1 

 L2 

 L1 

is parallel to L2 

is parallel to L3 

is parallel to L3 

 L1, L3 R 

Therefore R is transitive. 

Therefore the relation R is an equivalence relation. 

Set of all lines related to line y=2x+4 is set of all lines that are parallel to the line 

y=2x+4. 
 
Slope of line y=2x+4 is m = 2. Therefore, lines parallel to the given line is of the 

form y=2x+c , where cR . 
 
 

15. Let R be the relation in the set 1, 2, 3, 4

given by 

R = 1, 2, 2, 2, 1, 1, 4, 4, 1, 3, 3, 3, 
correct answer. 

(A) R is reflexive and symmetric but not transitive. 

(B) R is reflexive and transitive but not symmetric. 

(C) R is symmetric and transitive but not reflexive. 

(D) R is an equivalence relation 

3, 2. Choose the 

 
Ans: R = 1, 2, 2, 2, 1, 1, 4, 4, 1, 3, 3, 3, 3, 2. 

Since a, aR , for every a1, 2, 3, 4

The relation R is reflexive. 

Since 1, 2R , but 2, 1R . 
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Therefore R is not symmetric. 

a, b,b, cR  a, cR 

Therefore R is transitive. 

for all a, b, c1, 2, 3, 4 . 

 

Therefore the relation R is reflexive and transitive but not symmetric. 

The correct answer is (B) R is reflexive and transitive but not symmetric. 

 
 

16. Let R be the relation in the set N given by 

Choose the correct answer. 

(A) 2, 4 R 

(B) 3, 8 R 

(C) 6, 8 R 

(D) 8, 7 R 

R = a, b: a = b - 2, b > 6



Ans: The given relation is 

Now, 

Considering 2, 4R . 

R = a, b: a = b - 2, b > 6



Since, b > 6, so, 2, 4R . 

Considering 3, 8R . 

Since 3  8 - 2 , so 3, 8R . 
 

Considering 6, 8R . 

Since 8>6 and 6=8-2 , so 6, 8R . 

Therefore, the correct answer is ( C ) 6, 8R . 
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Exercise 1.2 

 
1. Show that the function 

 

 
f: R 

 
 
*  R* 

 

 
defined by 

 
f x = 

1
 

x 

 

 
is one-one and 

onto, where R* is the set of all non-zero real numbers. Is the result true, if 

the domain R* is replaced by N with co-domain being same as R* ? 
 

Ans: The function 
 
f: R *  R* is defined by f x = 

1 
. 

x 
 

For f to be one – one: 

x, yR* such that 

 
1 

= 
1 

x y 

 x = y 

f x = f y



Therefore, the given function f is one – one. 

For f to be onto: 

For yR* there exists x = 
1 
R 

y * [as y  0 ] such that 
 

f x= 
1 

= y 
 1 
 
 



Therefore, the given function f is onto. 

Hence the given function f is one – one and onto. 
 

 
Consider a function 

 
g: N  R* 

 
defined by gx= 

1
 

x 
 

We have, gx =gx   
1 

= 
1 
 x =x 

x1 x2 
1 2 1 2 
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Therefore the function g is one – one. 
 
The function g is not onto as for 1.2=R* 

 
 
there does not exit any x in N such 

that gx= 
1 

. 
1.2 

 

Therefore, function g is one-one but not onto. 
 
 

2. Check the injectivity and surjectivity of the following functions: 
 

i. f: N  N given by f  x =x2 
 

Ans: The given function f: N 
 
For x, yN, 

f x = f y

 N is defined by f x=x2 . 

 

 x2 = y2 
 

 x = y 
 
Therefore function f is injective. 

Since 2N , but, there does not exist any x in N such that 

Therefore function f is not surjective. 

Hence, function f is injective but not surjective. 

 

 
f x=2 . 

 
 

ii. f: Z  Z given by f  x =x2 
 

Ans: The given function f: Z 
 
Since, 

f -1 = f 1

 Z is defined by f x=x2 . 
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= 1 

But -1  1 
 

Therefore function f is not injective. 

Since -2Z, but, there does not exist any element xZ such that 

f x = -2 

Therefore function f is not surjective. 

Hence, function f is neither injective nor surjective. 
 
 

iii. f: R  R given by f  x =x2 
 

Ans: The given function f: R  R 
 
Now, 

f -1 = f 1

= 1 

is given by f x = x2 

But -1  1. 
 

Therefore function f is not injective. 

Since -2R , but, there does not exist any element xR 

f x = -2 . 

Therefore function f is not surjective. 

Hence, function f is neither injective nor surjective. 

 
 
such that 

 
 

iv. f: N  N given by f  x =x3 
 

Ans: The given function f: N  N is given by f x = x3 
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For x, yN, 

f x = f y


 x3 = y3 
 

 x = y 
 
Therefore function f is injective. 

Since 2N , but, there does not exist any x in N such that 

Therefore function f is not surjective. 

Hence, function f is injective but not surjective. 

 

 
f x=2 . 

 
 

v. f: Z  Zgiven by f  x =x3 
 

Ans: The given function f: Z  Z 

For x, yZ, 

f x = f y

is given by f x = x3 

 

 x3 = y3 
 

 x = y 
 
Therefore function f is injective. 

Since 2Z, but, there does not exist any x in Z such that f x=2 . 

Therefore function f is not surjective. 

Hence, function f is injective but not surjective. 
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 

 
 

3. Prove that the Greatest Integer Function f: R  R given by f  x = x, 
is neither one – one nor onto, where x
than or equal to x . 

denotes the greatest integer less 

Ans: The function f: R 

Now, 

f 1.2 = 1.2

= 1 

f 1.9 = 1.9

= 1 

 R is defined by f x= x. 

Therefore, f 1.2 = f 1.9, but 1.2 1.9 . 

Hence function f is not one – one. 

Taking 0.7R, f x = x is an integer. There does not exist any element xR 

such that f x = 0.7 . 
 

Therefore, function f is not onto. 

Hence, the greatest integer function is neither one – one nor onto. 
 
 
 

4. Show that the Modulus Function f: R  R given by x = x is neither 

one – one nor onto, where x 

negative. 

is x , if x is positive or 0 and x is -x , if x is 

Ans: f: R  R is f x = x 
 

 
 x; x>0

-x; x<0



Now, 
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 

 

 

 

 

 

f -1 = -1 

= 1 

f 1 = 1 

= 1 

Therefore, f 1 = f -1 , but -1  1. 
 

Hence function f is not one – one. 

Taking -1R , f x = x is non-negative. Hence, there does not exist any 

element xR such that f x= -1. 
 

Therefore, function f is not onto. 

Therefore, the modulus function is neither one-one nor onto. 
 
 

 

 
5. Show that the Signum Function f: R 


neither one-one nor onto. 

 

R , given by 

 1 if x>0 
f x = 0, if x=0 is 

-1 if x<0




Ans: The function f: R 

 
 
Now, 

f 1 = f 2

= 1 

 1 if x>0 
 R is given by f x=


0, if x=0


-1 if x<0

But 1  2 
 

Hence function f is not one – one. 
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Since f x takes only 3 values 1, 0, or -1, for the element -2 in co-domain 
 

R , there does not exist any x in domain R such that 

Therefore, function f is not onto. 

f x = -2 . 

Therefore, the Signum function is neither one-one nor onto. 
 
 
 

6. Let A = 1, 2, 3, B = 4, 5, 6, 7 and let f = 1, 4, 2, 5, 3, 6be a 

function from A to B. Show that f is one – one. 

Ans: The function f: A  B 
 
is defined as f = 1, 4, 2, 5, 3, 6. Where 

A = 1, 2, 3, B = 4, 5, 6, 7

Since, 

f 1 = 4 
 

f 2 = 5 

f 3 = 6 

Hence the images of distinct elements of A under f are distinct. 

Therefore, the function f is one – one. 

 

7. In each of the following cases, state whether the function is one – one, onto 
or bijective. 

Justify your answer. 

i. f: R  R defined by f x= 3 - 4x . 
 

Ans: The function f: R  R is defined by f x = 3 - 4x . 
 

Taking x1, x2 R such that f x1  = f x2  , 
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1 2 

1 2 

 
 

 3- 4x1 = 3- 4x2 

 -4x1 = -4x2 

 x1 = x2 

Hence function f is one – one. 

For any real number y 

f 
 3-y 

=3-4
 3-y 






in R , there exists 

3-y
 

4 

 
 
 
 
 
 
 
 
in R such that 

 4   4    

=y 
 
So, function f is onto. 

Therefore, function f is bijective. 
 
 
 

ii. f: R  R defined by f  x = 1 + x2 
 

Ans: The function f: R  R defined as f x = 1 + x2 
 

Taking x1, x2 R such that f x1  = f x2 


1+x2 =1+x2 
 
 x2 =x2 

 x1 =±x2 

Hence function f is not one – one because 

x1 =x2 . 

 
 
 

f x1  = f x2 







does not mean that 

 

Taking -2R . Since f x = 1 + x2 is positive for all xR , so there does not 

exist any x in domain R such thatf x = -2 . 
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= 

 
 
 

Therefore, function f is not onto. 

Hence, the function f is neither one – one nor onto. 
 
 
 

8. Let A and B be sets. Show that f: A × B  B × A such that 

a, b =b, a is bijective function. 
 

Ans: The function f: A × B  B × A is defined as f a, b = b, a . 
 

a1, b1 , a2 , b2 A×B 

b1, a1  = b2 , a2 

such that f a1, b1  = f a2 , b2 



 b1 =b2 and a1 = a 2 

b1, a1  = b2 , a2 

Hence function f is one – one. 

For b, aB×A , 

There exists a, bA×B 

So, function f is onto. 

such that f a, b = b, a



Therefore, function f is bijective. 
 
 
 

 n+1 
, if n is odd




9. Let f: N  N be defined by f n  2
 n 

 
for all n N . State 

    , if n is even 
  2 

whether the function f is bijective. Justify your answer. 
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= 

 
 
 

n+1
, if n is odd


Ans: The function f: N  N is defined by f n   2
 n 

 
for all 

    , if n is even 
  2 

nN. 

Now, 

f(1)=
1+1

 
2 

 

=1 

f(2)= 
2

 
2 

=1 

Here, f 1 = f 2 , but 1  2 . 
 

Hence function f not is one – one. 

Taking nN; 

Case I: n is odd 
 

Hence n = 2r + 1, for some rN 

f 4r + 1 = 
4r+1+1 

2 

=2r+1 

Case II: n is even 

there exists 4r + 1N such that 

 

Hence, n = 2r for some rN 

f 4r= 
4r

 
2 

= 2r . 

there exists 4rN such that 
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 x-3 

 x-3 

 
 
 

So, function f is onto. 

Therefore, function f is not bijective. 
 
 
 

10. Let A=R-3 and B = R - 1. Consider the function f:A  B defined 

by f x = x-2  . Is f one-one and onto? Justify your answer. 
 



Ans: The function f:A  B 

B = R - 1. 

 
is defined by f x= x-2  , where 

 
A=R-3


and 

 

For x, yA 
 

 
x-2 

= 
y-2 

x-3 y-3 

such that f x=f y



 (x–2)(y–3) = (y–2)(x–3) 

 xy–3x–2y + 6 = xy–2x–3y + 6 

 –3x–2y = –2x–3y 

 x = y 
 
Hence function f is one – one. 

If yB = R-1, then y  1. 
 

The function f is onto if there exists xA such that 
 

 
x-2 

=y 
x-3 

 x–2 = xy–3y 

 x(1–y) = –3y + 2 

f x= y . 
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 x= 
2-3y 

A [y 1] 
1-y 

 
for any yB, there exists 

 
 2-3y 

-2
 

 
 
 

2-3y A 
1-y 

 
 
 
 
such that, 

 2-3y   1-y 
f  =    

 

 1-y   2-3y 
-3

  1-y 
 

= 
2-3y-2+2y 
2-3y-3+3y 

 

= 
-y 

-1 

=y 
 
So, function f is onto. 

Hence, function f is one – one and onto. 
 
 
 

11. Let f: R  R be defined as f x= x4 . Choose the correct answer. 
 

(A) f is one-one onto 

(B) f is many-one onto 

(C) f is one-one but not onto 

(D) f is neither one-one nor onto 
 
Ans: The function f: R  R is defined as f x = x4 . 

 

Taking x, yA 
 
 x4 =y4 

such that f x=f y
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 3   3 





 x=±y 

Therefore, f x = f y



does not necessarily mean that x=y . 

 

Hence function f is not one – one. 

For 2R , there does not exist any x in domain R such that 

So, function f is not onto. 

 
f x



= 2 . 

Hence, The correct answer is (D ) function f is neither one – one nor onto. 
 
 

 12. Let f: R 

R be defined as f x


= 3x . Choose the correct answer. 

 

(A) f is one – one onto 

(B) f is many – one onto 

(C) f is one – one but not onto 

(D) f is neither one – one nor onto 

Ans: The function f: R  R is defined as f x = 3x . 
 

Taking x, yA 

 3x = 3y 

 x = y 

such that f x=f y



Hence function f is one – one. 
 

For yR , there exists 
y
 

3 
in R such that; 

 

f  y =3 y 
   

=y 
 

So, function f is onto. 

Therefore, the correct answer is ( A ) function f is one – one and onto. 
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1. Show that function f: R  {xR:-1 < x < 1} defined by 

f x = 
x 

1+|x| 
,x R is one – one and onto function. 

 

 
Ans: The function 

 
f: R  {xR:-1 < x < 1} is defined as f x= 

x 

1+|x| 
,xR . 

 

For the function f to be one – one: 

f x = f y , where x, yR . 
 

 
x 

= 
y 

1+|x| 1+|y| 

Assuming that x is positive and y is negative: 
 

x 
= 

y 

1+x 1+y 

 2xy=x-y 

Since, x > y  x-y > 0 . 

Miscellaneous Exercise 

 
 

But 2xy is negative. 
 

Therefore, 2xy  x - y . 
 

Hence, x being positive and y being negative is not possible. Similarly x being 

negative and y being positive can also be ruled out. 

So, x and y have to be either positive or negative. 

Assuming that both x and y are positive: 

f(x)=f(y) 

 
x 

=  
y 

1+x 1+y 

 x+xy=y+xy 
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 x=y 

Assuming that both x and y are negative: 

f(x)=f(y) 
 

 
x 

=  
y 

1+x 1+y 

 x+xy=y+xy 

 x=y 
 
Therefore, the function f is one – one. 

For onto: 

yR such that -1 < y < 1. 
 
 
If y is negative, then, there exists x =  

y 
R 

1+y 

 
such that 

 

 1+y 

 

 
 
 

 y 
 y   1+y 

f  1+y 
=

 
1+ 

 
 

y 

=  1+y  

1+
 -y 
 



= 
y 

1+y-y 
 

=y  

 

 

 

y 

1+y 

 
If y is positive, then, there exists x =  

y 
R 

1-y 
such that 
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 1-y 

 

y 

=  1-y  

1+
 -y 
 



= 
y 

1-y+y 
 

=y 
 
Therefore, the function f is onto. 

Hence the given function f is both one – one and onto. 

 
 

 y 
 y   1-y 

f  1-y 
=

 
1+ 

y 

1-y 

 
 

2. Show that the function f: R  R given by f x

= x3 

 
is injective. 

 

Ans: The given function f: R  R is given as f x = x3 . 
 

For the function f to be one – one: 

f x = f y

 x3=y3 

where x, yR . 
 

…… (1) 
 

We need to show that x=y . 

Assuming that x  y , then, 

 x3  y3 

Since this is a contradiction to (1), therefore, x=y . 

Hence, the function f is injective. 
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3. Given a non-empty set X, consider P  Xwhich is the set of all subsets of 

X. Define the relation R in P  X as follows: 
 

For subsets A,B in P  X , ARB if and only if A  B. Is R an equivalence 

relation on P  X ? Justify you answer. 
 

Ans: We know that every set is a subset of itself, ARA for all 
 
Therefore R is reflexive. 

Let ARB A  B. 

This does not mean that B A. 

APX

If A = 1, 2and B = 1, 2, 3, then it cannot be implied that B is related to A . 
 

Therefore R is not symmetric. 

If ARB and BRC , then; 

A  B and B C 

 A  C 

 ARC  
 

Therefore R is transitive. 

Hence, R is not an equivalence relation as it is not symmetric. 
  

4.  Find the number of all onto functions from the set {1, 2, 3, ... , n} to itself. 
 

Ans: The total number of onto maps from {1, 2, 3, ... , n} to itself will be same 

as the total number of permutations on n symbols 1, 2, 3, ... , n . 

Since the total number of permutations on n symbols 1, 2, 3, ... , n is n , thus 

total number of onto maps from {1, 2, 3, ... , n} to itself are n . 

1 

 
 

5.  Let A=-1, 0, 1, 2,B=-4, -2, 0, 2and f,g:A  B be functions defined 
 

by f x =x2 -x, x  A and g x =2 x- -1,x A . Are f and g equal? 
2 
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 2 

 
 

Justify your answer. (Hint: One may note that two function f:A  B 

and g:A  B such that f a=gaa A , are called equal functions) 
 

Ans: Let A=-1, 0, 1, 2,B=-4, -2, 0, 2 and f,g:A  B are defined by 

f x=x2 -x, xA 

 
f -1=-12 

--1

=1+1 

=2 

And, 

 
and gx=2 x- 

1 
-1,xA . 

2 

 

g-1=2 -1- 1 
-1 

2 
 

=2 
3 -1 

 

=3-1 

=2 

 f -1=g-1 

f 0=02 
-0

=0 

And, 
 

g0=2 0- 
1 

-1 
2 

=1-1 

=0 

 f 0=g0
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 2 

 2 




f 1=12 
-1

=1-1 

=0 

And, 
 

g1=2 1- 1 
-1 

2 
 

=2 
1 -1 
 

=1-1 

=0 

 f 1=g1 

f 2=22 
-2

=4-2 

=2 

And, 
 

g2=2 2- 
1 

-1 
2 

 

=2 
3 -1 

 

=3-1 

=2 

 f 2=g2

Therefore, f a=gaaA . Hence functions f and g are equal. 
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6.  Let A=1, 2, 3 Then number of relations containing 1, 2 and 1, 3
which are reflexive and symmetric but not transitive is 

(A) 1 

(B) 2 

(C) 3 

(D) 4 

Ans: We are given a set A=1, 2, 3. 
 

Let us take the relation R , containing 1, 2 and 1, 3, as 

R=1, 1, 2, 2, 3, 3, 1, 2, 1, 3, 2, 1, 3, 1. 
 

As we can see that 1, 1, 2, 2, 3, 3R , therefore relation R is reflexive. 
 

Since 1, 2, 1, 3, 2, 1R , the relation R is symmetric. 

The relation Relation R is not transitive because 1, 2,3, 1R , but 3, 2R 

The relation Relation R will become transitive on adding and two pairs 

3, 2, 2, 3 . 

Therefore the total number of desired relations is one. 

The correct answer is option ( A ) 1. 

 
 

7.  Let 

is 

(A) 1 

(B) 2 

(C) 3 

(D) 4 

A=1, 2, 3Then number of equivalence relations containing 1, 2
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



Ans: We are given a set A=1, 2, 3. 
 

Let us take the relation R , containing 1, 2 as 

R=1, 1, 2, 2, 3, 3, 1, 2, 2, 1. 
 

Now the pairs left are 2, 3, 3, 2, 1, 3, 3, 1


On order to add one pair, say 2, 3 , we must add 3, 2
are required to add 1, 3, 3, 1 for transitivity. 

for symmetry. And we 

 

So, only equivalence relation (bigger than R ) is the universal relation. 

Therefore, the total number of equivalence relations containing 1, 2

Hence, the correct answer is (B) 2 . 

are two. 
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