Chapter

Chemical Kinetics

Intext Exercise

- 1. For the reaction $R \rightarrow P$, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
- **Ans:** The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

Average rate = $-\frac{d[R]}{dt}$

This can be written as:

Average rate = $-\frac{[R]_2 - [R]_1}{t_2 - t_1}$ $R_1 = 0.03 \text{ M}$ $R_2 = 0.02 \text{ M}$ $t_2 - t_1 = 25 \text{ min}$ Putting the values, we get: Average rate = $-\frac{0.02 - 0.03}{25}$ Average rate = $-\frac{-0.01}{25} = 4 \times 10^{-4} \text{ M min}^{-1}$

So, the average rate in minutes will be 4×10^{-4} M min⁻¹ Now, to find the average rate in seconds we have to divide the above answer by 60. So, the answer will be:

Average rate =
$$-\frac{4 \times 10^{-4}}{60} = 6.66 \times 10^{-6} \text{ M s}^{-1}$$

Therefore, the average rate in seconds will be $6.66 \times 10^{-6} \text{ M s}^{-1}$

1

- 2. In a reaction, $2A \rightarrow$ Products, the concentration of A decreases from 0.5 mol L⁻¹ to 0.4 mol L⁻¹ in 10 minutes. Calculate the rate during this interval.
- **Ans:** The average rate of the reaction can be calculated by dividing the change in the rate of decreasing the rate of reactant by the time taken. This is given below:

Average rate =
$$-\frac{1}{2} \frac{\Delta[A]}{\Delta t}$$

This is due the fact that the reaction given is:
 $2A \rightarrow Products$
So, the average rate will be written as:
Average rate = $-\frac{1}{2} \frac{[A]_2 - [A]_1}{t_2 - t_1}$
 $A_1 = 0.5 \text{ M}$
 $A_2 = 0.4 \text{ M}$
 $t_2 - t_1 = 10 \text{ min}$
Putting the values, we get:
Average rate = $-\frac{1}{2} \times \frac{0.4 - 0.5}{10}$
Average rate = $-\frac{1}{2} \times \frac{-0.1}{10} = 5 \times 10^{-3} \text{ M min}^{-1}$
So, the average rate will be $5 \times 10^{-3} \text{ M min}^{-1}$

- 3. For a reaction, $A + B \rightarrow$ Product, the rate law is given by: $r = k [A]^{1/2} [B]^2$. What is the order of the reaction?
- Ans: The order of the reaction can be calculated by adding the stoichiometry coefficients of the reactants in the given rate of the reaction.

Given the rate is $r = k [A]^{1/2} [B]^2$

So, the order will be:

Order =
$$2 + \frac{1}{2} = 2.5$$

So, the order of the reaction is 2.5

4. The conversion of the molecules X to Y follows second order kinetics. If concentration of x is increased to three times how will it affect the rate of formation of Y?

Ans: The reaction will be:

 $X \rightarrow Y$

As the question says that this reaction follows the second order reaction, we can write the rate law equation as:

Rate = $k[X]^2 = ka^2$

If $[X] = a \mod L$

It is said that the concentration of X increases by three times, so we can write:

 $[X] = 3a \mod L$

Therefore, the rate of reaction will be:

Rate = $k (3a)^2 = 9 ka^2$

Thus, the rate of the reaction will increase by 9 times or the rate formation will increase by 9 times.

5. A first order reaction has a rate constant 1.15×10^{-3} s⁻¹. How long will 5 g reactant take to reduce to 3 g?

Ans: The initial amount of the reactant is given as 5 g. We can write:

 $[R]_0 = 5 g$

The final amount of the reactant is given as 3 g. We can write:

[R] = 3 g

We are also given the value of rate constant as:

Rate constant = 1.15×10^{-3} s⁻¹

We know that the reaction is a 1st order reaction, the time can be calculated by:

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

Putting the values in the above formula, we get:

$$t = \frac{2.303}{1.15 \text{ x } 10^{-3}} \log \frac{5}{3}$$

 $t = \frac{2.303}{1.15 \times 10^{-3}} \times 0.2219$ t = 444 seconds So, the time taken will be 444 seconds.

6. Time required to decompose SO₂Cl₂ to half its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.

Ans: We are given that the decomposition of SO_2Cl_2 is a first order reaction. So, we can write:

$$t_{1/2} = \frac{0.693}{k}$$

It is mentioned that the time required for the initial amount to become half is 60 minutes.

 $t_{1/2} = 60 \min$

Therefore,
$$k = \frac{0.693}{t_{1/2}}$$

Putting the value, we get:

$$k = \frac{0.693}{60 \times 60} = 1.925 \times 10^{-4} \text{ s}^{-1}$$

Thus, the rate constant is $1.925 \times 10^{-4} \text{ s}^{-1}$.

7. What will be the effect of temperature on rate constant?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

 $k = A e^{-E_a/Rt}$

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

 E_{a} is the activation energy.

8. The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate E_a.

Ans: The formula that can be used to solve the question is:

$$\log \frac{k_{1}}{k_{2}} = \frac{E_{a}}{2.303R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right]$$

 T_1 temperature given is absolute temperature and it is equal to 298 K.

 $T_2 = 298 + 10 = 308 \text{ K}$

It is given that the rate of the chemical reaction double for an increase of 10 K, therefore, we can write the values of rate constant as:

$$\mathbf{k}_1 = \mathbf{x}$$

$$k_{2} = 2x$$

Also, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Now, putting all the values in the formula, we get:

$$\log \frac{2x}{x} = \frac{E_{a}}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$
$$\log 2 = \frac{E_{a}}{2.303 \times 8.314} \left[\frac{10}{298 \times 308} \right]$$
$$E_{a} = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log 2}{10}$$
$$E_{a} = 52897.78 \text{ J mol}^{-1}$$
$$E_{a} = 52.89 \text{ kJ mol}^{-1}$$

9. The activation energy for the reaction $2HI_{(g)} \rightarrow H_{2_{(g)}} + I_{2_{(g)}}$ is 209.5 kJ mol⁻¹ at 581 K. Calculate the fraction of molecules of molecules having energy equal to or greater than activation energy.

Ans: We are given the activation energy as $209.5 \text{ kJ mol}^{-1}$ T = 581 K $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Now, the fraction of molecules of reactants having energy equal to or greater than activation energy is given as:

$$x = e^{E_a/RT}$$

$$\ln x = \frac{-E_a}{RT}$$

$$\log x = \frac{-E_a}{2.303 \text{ RT}}$$

$$\log x = \frac{209500}{2.303 \times 8.314 \times 581} = 18.8323$$
Now, taking the antilog:
x = Antilog (18.8323)
x = 1.471 × 10⁻¹⁹

NCERT Exercise

1. From the rate expression for the following reactions, determine their order of reaction and the dimension of the rate constants.

(i) 3 NO(g) \rightarrow N₂O(g) Rate = k[NO]²

Ans:

We are given:

Rate = $k[NO]^2$

From this we can see that the order of the reaction = 2

$$k = \frac{rate}{[No]^2}$$

Dimensions will be:

$$k = \frac{\text{mol } L^{-1} \text{ s}^{-1}}{(\text{mol } L^{-1})^2}$$
$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol}^2 L^2}$$
$$= L \text{ mol}^{-1} \text{ s}^{-1}$$

(ii)
$$H_2O_2(aq)+3I^{-}(aq)+2H^{+} \rightarrow 2H_2O(l)+I_3^{-}$$
 Rate=k[H_2O_2][I^{-}]

Ans: Rate =
$$k[H_2O_2][I^-]$$

From this we can see that the order of the reaction = 2

$$k = \frac{\text{rate}}{[H_2O_2][I^-]}$$

Dimensions will be:
$$k = \frac{\text{mol } L^{-1} \text{ s}^{-1}}{(\text{mol } L^{-1})^2}$$
$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol}^2 L^2}$$
$$= L \text{ mol}^{-1} \text{ s}^{-1}$$

(iii) $CH_3CHO(g) \rightarrow CH_4(g) + CO(g)$ Rate = k[CH_3CHO]^{3/2} Ans: Rate = k[CH_3CHO]^{3/2}

From this we can see that the order of the reaction = $\frac{3}{2}$

$$k = \frac{\text{rate}}{[CH_{3} CHO]^{\frac{3}{2}}}$$

Dimensions will be:
$$k = \frac{\text{mol } L^{-1} \text{ s}^{-1}}{(\text{mol } L^{-1})^{3/2}}$$
$$= \frac{\text{mol } L^{-1} \text{ s}^{-1}}{\text{mol}^{\frac{3}{2}} L^{\frac{3}{2}}}$$
$$= L^{\frac{1}{2}} \text{ mol}^{-\frac{1}{2}} \text{ s}^{-1}$$

(iv) $C_2H_5Cl(g) \rightarrow C_2H_4(g) + HCl(g)$ Rate = k[C_2H_5Cl] Ans: Rate = k[C_2H_5Cl]

From this we can see that the order of the reaction = 1

$$k = \frac{\text{rate}}{[C_2 H_5 \text{Cl}]}$$

Dimensions will be:
$$k = \frac{\text{mol } L^{-1} \text{ s}^{-1}}{(\text{mol } L^{-1})}$$
$$= \text{s}^{-1}$$

2. For a reaction:

 $2A+B \rightarrow A_2B$

The rate = $k[A][B]^2$ with $k = 2.0 \times 10^{-6} \text{ mol}^{-2} \text{ L}^2 \text{ s}^{-1}$.

Calculate the initial rate of the reaction when $[A] = 0.1 \text{ mol } L^{-1}$, $[B] = 0.2 \text{ mol } L^{-1}$ Calculate the rate of reaction after [A] is reduced to 0.06 mol L^{-1} .

Ans: We are given the rate of the reaction as:

rate = $k[A][B]^2$

Putting the values in this, we get the rate as:

rate = $2.0 \times 10^{-6} \times 0.1 \times (0.2)^{2}$

rate = $8.0 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$

When [A] is reduced from $0.10 \text{ mol } L^{-1}$ to $0.06 \text{ mol } L^{-1}$. So, the amount of [A] reacted will be:

 $= 0.10 - 0.06 = 0.04 \text{ mol } L^{-1}$

Therefore, the concentration of B reacted will be:

$$=\frac{1}{2} \times 0.04 = 0.02 \text{ mol } \text{L}^{-1}$$

Hence, new [B] = $0.2 - 0.02 = 0.18 \text{ mol } \text{L}^{-1}$

Now, the new rate of the reaction will be:

rate = $2.0 \times 10^{-6} \times 0.06 \times (0.18)^2$

rate = $3.89 \times 10^{-9} \text{ mol } L^{-1} \text{ s}^{-1}$

Therefore, the rate of the reaction is $3.89 \times 10^9 \text{ mol } \text{L}^{-1} \text{ s}^{-1}$.

3. The decomposition of NH_3 on the platinum surface there is zero order reaction. What are the rates of production of N_2 and H_2 if $k = 2.5 \times 10^{-4} \text{ mol}^{-1} \text{ L s}^{-1}$?

Ans: The following equation represents the breakdown of Ammonia on the platinum surface.

 $2NH_{3_{(g)}} \xrightarrow{Pt} N_{2_{(g)}} + 3H_{2_{(g)}}$

Therefore, we can write the rate of the reaction as:

Rate = $-\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$ But we are given that the reaction is a zero order reaction. So, Rate = $-\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt} = 2.5 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$

Thus, the rate of production of N_2 will be:

$$\frac{d[N_2]}{dt} = 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

And the rate of production of H_2 will be:

$$\frac{d[H_2]}{dt} = 3 \times 2.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1} = 7.5 \times 10^{-4} \text{ mol } L^{-1} \text{ s}^{-1}$$

4. The decomposition of dimethyl ether leads to the formation of CH_4 , H_2 and CO and the reaction rate is given by

Rate = $k [CH_3OCH_3]^{3/2}$

The rate of reaction is followed by increase in pressure in a closed vessel, so the rate can also be expressed in terms of the partial pressure of dimethyl ether, i.e.,

Rate = k $(P_{CH_{3}OCH_{3}})^{3/2}$

It the pressure is measured in bar and time in minutes, then what are the units of rate and rate constants?

Ans: If the pressure is measured in bar and time in minutes, then unit of rate will be: = bar min⁻¹ We are given the rate of the reaction as: Rate = k $[CH_3OCH_3]^{3/2}$

Therefore, $k = \frac{\text{Rate}}{[\text{CH}_3\text{OCH}_3]^{3/2}}$

So, we can write the units of rate constant as:

$$k = \frac{bar \min^{-1}}{bar^{3/2}} = bar^{-1/2} \min^{-1}$$

So, the units are $bar^{-1/2} min^{-1}$.

5. Mention the factors that affect the rate of a chemical reaction.

Ans: Factors that influence a reaction's speed include.

- (i) Reactant nature: The rate of reaction is affected by the kind of reactant. For example, ionic compound reactions are quicker than covalent compound reactions.
- (ii) The state of the reactants: Solid reactions are sluggish, liquid reactions are rapid, and gas reactions are very quick.
- (iii) Temperature: In addition, temperature has a significant impact on response rate. Every 10 degrees Celsius increase in temperature doubles the pace of reaction.
- (iv) Presence of catalyst: The rate of reaction is also affected by the presence of a catalyst in the reaction. It enhances the pace of reaction by increasing reaction surface area, by generating unstable intermediates with the substrate, and by offering a lower activation energy alternative path.

6. A reaction is second order with respect to a reactant. How is the rate of reaction affected if the concentration of the reactant is:

(i) Doubled

Ans: Let us assume that the concentration of the reactant be [A] = a Rate of the reaction will be:

 $\mathbf{R} = \mathbf{k}[\mathbf{A}]^2 = \mathbf{k}a^2$

It is said that the concentration of A increases by two times, so we can write:

 $[A] = 2a \mod L$

Therefore, the rate of reaction will be:

Rate = $k (2a)^2 = 4 ka^2$

Thus, the rate of the reaction will increase by 4 times.

(ii) Reduced to half

It is said that the concentration of A reduced to half, so we can write:

$$[\mathbf{X}] = \frac{1}{2} \text{ a mol/ } \mathbf{L}$$

Therefore, the rate of reaction will be:

Rate = k
$$\left[\frac{1}{2}a\right]^2 = \frac{1}{4}ka^2$$

Thus, the rate of the reaction will reduce by 1/4 times.

7. What is the effect of temperature on the rate constant of a reaction? How can this temperature effect on rate constant be represented quantitatively?

Ans: An increase of 10 degrees in temperature causes a reaction's rate constant to almost double in size. In any case, the Arrhenius equation gives the exact temperature dependency of a chemical reaction rate.

The Arrhenius equation is given below:

 $k = A \; e^{\text{-}E_a/Rt}$

Where, A is the Arrhenius factor or the frequency factor,

T is the temperature,

R is the gas constant,

 E_{a} is the activation energy.

The formula can also be written as:

$$\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left[\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right]$$

Where k_2 is the rate constant at temperature T_2

 \mathbf{k}_{1} is the rate constant at temperature \mathbf{T}_{1}

8. Ina pseudo first order hydrolysis of ester in water, the following results were obtained

t/s	0	30	60	90
[Ester]mol L ⁻¹	0.55	0.31	0.17	0.085

- (i) Calculate the average rate of reaction between the time interval 30 to 60 seconds.
- Ans:

Between the time interval of 30 to 60 sec the average rate id reaction will be calculated as:

 $=\frac{d[Ester]}{1}$

dt

Putting the values from the data given in the question, we can write:

$$= \frac{0.31 - 0.17}{60 - 30} = \frac{0.14}{30}$$
$$= 4.67 \times 10^{-3} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$$

9. A reaction is first order in A and second order in B.

(i) Write the differential rate equation

Ans: The differential rate equation can be written as:

$$-\frac{d[R]}{dt} = k[A][B]^2$$

(ii) How is the rate affected on increasing the concentration of B three times?

Ans: The concentration of B is increased by 3 times, then B = 3BTherefore, the rate will be:

$$-\frac{d[R]}{dt} = k[A][3B]^2 = 9 \times [A][B]^2$$

Therefore, the rate will increase by 9 times.

(iii) How is the rate affected when the concentration of both A and B are doubled?

Ans: The concentration of A is doubled, then A = 2AThe concentration of B is doubled, then B = 2BTherefore, the rate will be:

$$-\frac{d[R]}{dt} = k[2A][2B]^2 = 8 \times [A][B]^2$$

Therefore, the rate will increase by 8 times.

10.In a reaction between A and B the initial rate of reaction (r_0) was measured
for different concentrations of A and B as given below:

A/mol L ⁻¹	0.20	0.20	0.04
B/mol L ⁻¹	0.30	0.10	0.05
$r_0/mol L^{-1} s^{-1}$	5.07 × 10 ⁻⁵	5.07 × 10 ⁻⁵	1.43×10^{-4}

What is the order of the reaction with respect to A and B?

Ans: Let us assume that the order of the reaction with respect to A be xand with respect to B be y.

Therefore, we can write:

$$r_{0} = k [A]^{x} [B]^{y}$$

$$5.07 \times 10^{-5} = k [0.20]^{x} [0.30]^{y} \dots (i)$$

$$5.07 \times 10^{-5} = k [0.20]^{x} [0.10]^{y} \dots (ii)$$

$$1.43 \times 10^{-5} = k [0.40]^{x} [0.05]^{y} \dots (iii)$$
Let us divide (i) by (ii), we get:
$$\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}} = \frac{k [0.20]^{x} [0.30]^{y}}{k [0.20]^{x} [0.10]^{y}}$$

$$= \left(\frac{0.30}{0.10}\right)^{x} = \left(\frac{0.30}{0.10}\right)^{y}$$
Therefore, $y = 0$
Now, dividing (iii) by (i), we get:
$$\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}} = \frac{k [0.40]^{x} [0.05]^{y}}{k [0.20]^{x} [0.30]^{y}}$$
Because $y = 0$

$$= 2.821 = 2^{x}$$
Now, taking log on both the sides.
$$\log 2.821 = x \log 2$$

$$x = \frac{\log 2.821}{\log 2}$$

$$x = 1.496$$

$$x = 1.5$$

Thus, the order of the reaction according to A is 1.5 and according to B is 0.

11. The following results have been obtained during the kinetic studies of the reaction.

Experiment	A/mol L ⁻¹	B/mol L ⁻¹	Initial rate of formation of
			D/mol L ⁻¹ min ⁻¹
Ι	0.1	0.1	$6.0 imes 10^{-3}$
II	0.3	0.2	7.3×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

 $2\mathbf{A} + \mathbf{B} \rightarrow \mathbf{C} + \mathbf{D}$

Determine the rate law and the rate constant for the reaction.

Ans: Let us assume that the order of the reaction with respect to A be x and with respect to B be y.

Therefore, we can write:

Rate = $k [A]^{x} [B]^{y}$

 $6.0 \times 10^{-3} = k [0.1]^x [0.1]^y$ (i)

 $7.2 \times 10^{-2} = k [0.3]^{x} [0.2]^{y}$ (ii)

 $2.88 \times 10^{-1} = k [0.3]^{x} [0.1]^{y}$ (iii)

 $2.40 \times 10^{-2} = k [0.4]^{x} [0.1]^{y}$ (iv)

Let us divide (iv) by (i), we get:

$$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k [0.4]^{x} [0.1]^{y}}{k [0.1]^{x} [0.1]^{y}}$$
$$= 4 = \frac{[0.4]^{x}}{[0.1]^{x}}$$
$$= 4 = \left(\frac{0.4}{0.1}\right)^{x}$$
Therefore, x = 1
Now, dividing (iii) by (ii), we get:

 $\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}} = \frac{k \left[0.3\right]^{x} \left[0.4\right]^{y}}{k \left[0.3\right]^{x} \left[0.2\right]^{y}}$

$$= 4 = \left(\frac{0.4}{0.2}\right)^{y}$$
$$= 4 = 2^{y}$$
$$= 2^{2} = 2^{y}$$
$$y = 2$$

Thus, the order of the reaction according to A is 1 and according to B is 2. So, the rate law is:

Rate =
$$k[A][B]^2$$

 $k = \frac{Rate}{[A][B]^2}$

Now, putting the values for each experiment, we get: From experiment I:

$$k = \frac{6.0 \times 10^{-3}}{[0.1][0.1]^2}$$

= 6.0 L² mol⁻² min⁻¹
From experiment II:
$$k = \frac{7.3 \times 10^{-2}}{[0.3][0.2]^2}$$

= 6.0 L² mol⁻² min⁻¹
From experiment III:
$$k = \frac{2.88 \times 10^{-1}}{[0.3][0.4]^2}$$

= 6.0 L² mol⁻² min⁻¹
From experiment IV:
$$k = \frac{2.40 \times 10^{-2}}{[0.4][0.1]^2}$$

= $6.0 L^2 \text{ mol}^{-2} \text{ min}^{-1}$ Therefore, the rate constant will be k = $6.0 L^2 \text{ mol}^{-2} \text{ min}^{-1}$

12. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Experiment	A/mol L ⁻¹	B/mol L ¹	Initial rate D/mol L ⁻¹ min ⁻¹
Ι	0.1	0.1	2.0×10^{-2}
II		0.2	4.0×10^{-2}
III	0.4	0.4	
IV		0.2	2.0×10^{-2}

Ans: We are given that, the reaction between A and B is first order with respect to A and zero order with respect to B.

Therefore, the rate of the reaction is given by:

 $Rate = k[A]^{1}[B]^{0}$

So, we can write:

Rate = k[A]

According to the experiment I we can write:

 $2.0 \times 10^{-2} = k(0.1)$

 $k = 0.2 \text{ min}^{-1}$

According to the experiment II we can write:

 $4.0 \times 10^{-2} = (0.2) [A]$

 $[A]=0.2\ mol\ L^{\text{-1}}$

According to the experiment III we can write:

Rate = 0.2×0.4

 $= 0.08 \text{ mol } L^{-1} \text{ min}^{-1}$

According to the experiment III we can write:

 $2.0 \times 10^{-2} = (0.2) [A]$

 $[A] = 0.1 \ mol \ L^{_1}$

13. Calculate the half-life of a first order reaction from their rate constants given below:

(i) 200 s⁻¹

Ans: Half -life of the reaction can be related with the rate constant of the reaction as:

$$t_{1/2} = \frac{0.693}{k}$$

Putting the value of time, we get:

$$k = \frac{0.693}{200} = 3.46 \times 10^{-3} \text{ s}$$

So, the rate of the reaction is 3.46×10^{-3} s

(ii) 2 min⁻¹

Ans:

Half-life of the reaction can be related with the rate constant of the reaction as:

Half-life of the reaction can be related with the rate constant of the reaction as:

 $t_{1/2} = \frac{0.693}{k}$

Putting the value of time, we get:

$$k = \frac{0.693}{2} = 0.346 \text{ min}$$

So, the rate of the reaction is 0.346 min.

(iii) 4 years⁻¹

Ans:

____0.693

Putting the value of time, we get:

$$k = \frac{0.693}{4} = 0.173$$
 years

So, the rate of the reaction is 0.173 years.

The half-life for radioactive decay of ¹⁴C is 5730 years. An archeological 14. artifact containing wood had only 80% of the ¹⁴C found in a living tree. Estimate the age of the sample.

The given reaction in the above question is radioactive decay and the Ans: radioactive decay follows the first order kinetics. Therefore, the decay constant:

$$\lambda = \frac{0.693}{t_{_{1/2}}}$$

We are given the half-life time as 5730 years.

$$\lambda = \frac{0.693}{5730} \text{ years}^{-1}$$

To find the age of the sample, we can write:

$$t = \frac{2.303}{\lambda} \ log \frac{[R]_{_0}}{[R]}$$

80% of the wood is found so, the initial amount can be taken as 100 and the final amount as 80. Putting the values, we get:

$$t = \frac{2.303}{\frac{0.693}{5730}} \log \frac{100}{80}$$

t = 1845 years

Therefore, the age of the sample is 1845 years.

15. The experiment data for decomposition of N_2O_5

 $[2N_2O_5 \rightarrow 4NO_2 + O_2]$

In gas phase at 318 K are given below:

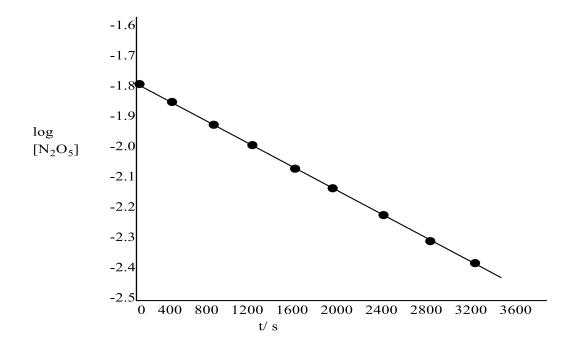
t/s	0	400	800	1200	1600	2000	2400	1800	3200
$10^{-2} \times [N_2O_5]/mol L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

(i) Plot $[N_2O_5]$ against t

Ans: The graph is given below:

(ii) Find the half-life period for the reaction

Ans: Time corresponding to the concentration,


 $\frac{1.630 \times 10^{-2}}{2} \text{ mol } L^{-1} = 0.815 \times 10^{-2} \text{ mol } L^{-1} \text{ is the half-life.}$

From the graph, the half-life obtained is 1440 s.

(iii) Draw the graph between $\log[N_2O_5]$ and t

Ans:

T(s)	$10^{-2} \times [N_2O_5]/mol L^{-1}$	$\log[N_2O_5]$
0	1.63	-1.79
400	1.36	-1.87
800	1.14	-1.94
1200	0.93	-2.03
1600	0.78	-2.11
2000	0.64	-2.19
2400	0.53	-2.28
2800	0.43	-2.37
3200	0.35	-2.46

(iv) What is the rate law?

Ans: The rate law of the reaction will be: Rate = $k[N_2O_5]$

(v) Calculate the rate constant.

From the plot [N O] y/s t, is given by:

Ans:

 $=-\frac{k}{2.303}$

Therefore, we obtain:

 $= -\frac{k}{2.303} = \frac{0.67}{3200}$ $= 4.82 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ s}^{-1}$

(vi) Calculate the half-life period from k and compare it will (ii)

Ans: Half-life is given by:

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{4.82 \times 10^{-4}} s$$

= 1438 seconds.

The value of half-life calculated from the k is very close to that obtained from the graph.

16. The rate constant for a first order reaction is 60 s⁻¹. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

Ans:

$$t = \frac{2.303}{k} \ log \frac{[R]_{_0}}{[R]}$$

As we know that:

The initial value of the reactant has become 1/16th. Now, putting the values, we get:

$$t = \frac{2.303}{60} \log \frac{16}{1}$$
$$t = \frac{2.303}{60} \log 16 = 4.62 \times 10^{-2} \text{ s}$$

Therefore, the time required will be 4.62×10^{-2} s.

17. During nuclear explosion, one of the products is 90 Sr with a half-life of 28.1 years. If 1 µg of 90 Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Ans: As radioactive disintegration follows first order kinetics.

Decay constant of ⁹⁰Sr (k) =
$$\frac{0.693}{t_{1/2}} = \frac{0.693}{28.1} = 2.466 \times 10^{-2} \text{ y}^{-1}$$

To calculate the amount left after 10 years.

a = 1 µg
t = 10 years
k=2.466 × 10⁻² y⁻¹
(a-x) = ?
k =
$$\frac{2.303}{t} \log \frac{a}{a-x}$$

2.466 × 10⁻² = $\frac{2.303}{10} \log \frac{1}{a-x}$
log(a-x) = -0.1071
(a-x) = Antilog -0.1071 = 0.7814 µg

To calculate the amount left after 60 years.

$$k = \frac{2.303}{t} \log \frac{a}{a-x}$$

2.466 × 10⁻² = $\frac{2.303}{60} \log \frac{1}{a-x}$
log(a-x) = -0.6425
(a-x) = Antilog -0.6425 = 0.2278 µg

18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

S: For first order reaction, we can write:

$$t = \frac{2.303}{k} \log \frac{a}{a-x}$$

99% completion means that x = 99% of a = 0.99 a

So, we can write:

$$t_{99\%} = \frac{2.303}{k} \log \frac{a}{a - 0.99a}$$
$$t_{99\%} = \frac{2.303}{k} \log 10^{2}$$
$$t_{99\%} = 2 \times \frac{2.303}{k}$$

90% completion means that x = 90% of a = 0.90 a

$$t_{99\%} = \frac{2.303}{k} \log \frac{a}{a - 0.90a}$$
$$t_{99\%} = \frac{2.303}{k} \log 10$$
$$t_{99\%} = \frac{2.303}{k}$$

Now, we can take the ratio as given below:

$$\frac{t_{99\%}}{t_{90\%}} = \frac{\left(\frac{2 \times 2.303}{k}\right)}{\left(\frac{2.303}{k}\right)}$$
$$t_{99\%} = 2 \times t_{90\%}$$

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

19. A first order reaction takes 40 min for 30% decomposition. Calculate $t_{1/2}$.

Ans:

30% decomposition means that x = 30% of a = 0.30 a

Since, the reaction is of 1^{st} order, we can write:

$$k = \frac{2.303}{t} \log \frac{a}{a-x}$$

Ans:

Time is given as 40 min. So, putting the values, we get:

$$k = \frac{2.303}{40} \log \frac{a}{a \cdot 0.30a}$$

$$k = \frac{2.303}{40} \log \frac{10}{7} \min^{-1}$$

$$k = \frac{2.303}{40} \times 0.1549 \min^{-1} = 8.918 \times 10^{-3} \min^{-1}$$

Now, we can calculate the half-life period as we have the rate constant value. We can write:

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{8.918 \times 10^{-3}} = 7.77 \text{ min}$$

So, the half-life is 7.77 min.

20. For the decomposition of azoisopropane to hexane and nitrogen at 543 K, the following data are obtained:

T (sec)	P (mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Ans: The decomposition of azoisopropane to hexane and nitrogen at 54.3 k is represent by the following equation.

 $(CH_3)_2CHN=NCH(CH_3)_2 \longrightarrow N_2 + C_6H_{14}$ $At t = 0 \quad P_0 \qquad 0 \qquad 0$ $At t = t \quad P_0 - P \qquad p \qquad p$

Total pressure after time t, we will be:

$$P_{t} = (P_{o}-p) + p + p$$
$$P_{t}=P_{o}+p$$
$$p=P_{t}-P_{o}$$

Now, we can substitute the value of p for the pressure of reactant at time t

$$=P_{o}-p$$
$$=P_{o}-(P_{t}-P_{o})$$
$$=2P_{o}-P_{t}$$

Now, we can apply the rate constant formula of 1^{st} order reaction.

$$k = \frac{2.303}{t} \log \frac{P}{2P_{o} - P_{t}}$$

When t = 360 s,

Putting the values, we get:

$$k = \frac{2.303}{360} \log \frac{35.0}{2 \times 35 - 54} = 2.175 \times 10^{-3} \text{ s}^{-1}$$

When t = 720 s,

Putting the values, we get:

$$k = \frac{2.303}{720} \log \frac{35.0}{2 \times 35 - 63} = 2.235 \times 10^{-3} \text{ s}^{-1}$$

Now, we can find the average value:

$$k = \frac{(2.175 \times 10^{-3}) + (2.235 \times 10^{-3})}{2} s^{-1}$$

$$k = 2.20 \times 10^{-3} s^{-1}$$

21. The following data were obtained during the first order thermal decomposition of SO_2Cl_2 at a constant volume.

$$\mathrm{SO}_2\mathrm{Cl}_{_{2_{\mathrm{(g)}}}} \mathop{\rightarrow} \mathrm{SO}_{_{2_{\mathrm{(g)}}}} \mathrm{+Cl}_{_{2_{\mathrm{(g)}}}}$$

Experiment	Time/ s	Total pressure/ atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Ans: The given reaction shows the thermal decomposition of SO_2Cl_2 at constant volume.

$$SO_2Cl_2$$
 \longrightarrow SO_2 + Cl_2

$$At t = 0 \qquad P_0 \qquad \qquad 0 \qquad \qquad 0$$

$$At t = t P_0 - P \qquad p \qquad p$$

Total pressure after time t, we will be:

$$\begin{split} P_t &= (P_o - p) + p + p \\ P_t &= P_o + p \\ p &= P_t - P_o \\ Now, we can substitute the value of p for the pressure of reactant at time t \end{split}$$

Now, we can substitute the value of p for the pressure of reactant at tim $=P_o-p$

$$= P_{o} - (P_{t} - P_{o})$$
$$= 2P_{o} - P_{t}$$

Now, we can apply the rate constant formula of 1^{st} order reaction.

$$k = \frac{2.303}{t} \log \frac{P}{2P_{o} - P_{t}}$$

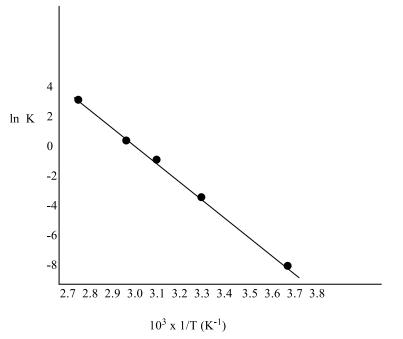
When the t = 100 s
$$k = \frac{2.303}{100} \log \frac{0.5}{2 \times 0.5 - 0.6}$$

$$k = 2.231 \times 10^{3} \text{ s}^{-1}$$

When P_t = 0.65 atm
Therefore, pressure of SO₂Cl₂ at time t total pressure is 0.65 atm, is
P_{SO₂Cl₂} = 2P_{o} - P_{t}
= 2 × 0.50 - 0.65
= 0.35 atm
Therefore, the rate of equation, when total pressure is 0.65 atm, is given by:
Rate = k(P_{SO₂Cl₂})
Rate = (2.33 x 10⁻³)(0.354) = 7.8 × 10⁻⁴ atm s⁻¹

22. The rate constant for the decomposition of N_2O_5 at various temperature is

given below:


T/°c	0	20	40	60	80
$10^5 \times k/s$	0.0787	1.70	25.7	178	2140

Draw a graph between ln K and 1/T and calculate the values of A and E_a . Predict the rate constant at 30° and 50° C.

Ans: As the data is given we can write:

T/°c	0	20	40	60	80
T/K	273	293	313	333	353
$\frac{1}{T}/k^{-1}$	3.66×10^{-3}	3.41×10^{-3}	3.19×10^{-3}	3.0×10^{-3}	2.83×10^{-3}
$10^5 \times k/s$	0.0787	4.075	25.7	178	2140
ln K	-7.147	-4.075	-1.359	-0.577	3.063

The graph is draw below:

Slope of the line, will be given as:

$$\frac{y_2 - y_1}{x_2 - x_1} = 12.301 \text{ K}$$

According to the Arrhenius equation,

Slope = $-\frac{E_a}{P}$ $= E_a = -slope \times R$ = (-12.301)(8.314)=102.27 KJ mol⁻¹ Again, $\ln k = \ln A - \frac{E_a}{RT}$ $\ln A = \ln k + \frac{E_a}{RT}$ As T = 273 K and $\ln k = -7.147$ Applying this in the formula, we get: $\ln A = -7.147 - \frac{102.27 \times 10^3}{8.314 \times 273} = 37.911$ So, A= 2.91×10^6 When T = 30 + 273 K = 303 K $\frac{1}{T} = 0.0033 \text{K} = 3.3 \times 10^{-3} \text{K}$ Now, at $\frac{1}{T} = 0.0033 \text{K} = 3.3 \times 10^{-3} \text{K}$ $\ln k = -2.8$ Therefore, $k = 6.08 \times 10^{-2} \text{ s}^{-1}$ When T = 50 + 273 K = 323 K $\frac{1}{T} = 0.0031 \text{K} = 3.1 \times 10^{-3} \text{K}$ Now, at $\frac{1}{T} = 0.0031 \text{K} = 3.1 \times 10^{-3} \text{K}$ $\ln k = -0.5$ Therefore, $k = 0.607 \text{ s}^{-1}$

23. The rate constant for the decomposition of hydrocarbons is 2.418×10^{-5} s⁻¹

at 546 K. If the energy of activation is 179.9 kJ /mol, what will be the value of the pre-exponential factor?

Ans: We are given some values as: $K = 2.418 \times 10^{-5} \text{ s}^{-1}$ T = 546 K $E_a = 179.9 \text{ kJ mol}^{-1} = 179.9 \times 10^3 \text{ J mol}^{-1}$

We the Arrhenius equation is:

 $k = A e^{-E_a/RT}$

In the log form, this can be written as:

$$\begin{aligned} \ln k &= \ln A - \frac{E_a}{RT} \\ \log k &= \log A - \frac{E_a}{2.303 \text{ RT}} \\ \log k &= \log \left(2.418 \times 10^{-5} \right) - \frac{179.9 \times 10^3}{2.303 \times 8.314 \times 546} \\ &= (0.3835 - 5) + 17.2082 = 12.5917 \\ \text{Therefore, } A &= \text{antilog } (12.5917) \\ A &= 3.912 \times 10^{12} \text{ s}^{-1} \end{aligned}$$

24. Consider a certain reaction $A \rightarrow$ Products with $k = 2.0 \times 10^{-2} \text{ s}^{-1}$. Calculate the concentration of A remaining after 100s if the initial concentration of A is 1.0 mol L⁻¹.

Ans: We are given some values, that are given below: $k = 2.0 \times 10^{-2} \text{ s}^{-1}$ t = 100 s

 $t = 100 \, s$

 $[A]_{o}=1.0 \text{ mol } L^{1}$

As we can see that the units of k is given in s⁻¹, this means that the reaction is a first order reaction.

Therefore, we can write:

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

Putting the values, we get:

$$2.0 \times 10^{-2} = \frac{2.303}{100} \log \frac{1.0}{[A]}$$
$$2.0 \times 10^{-2} = \frac{2.303}{100} (-\log[A])$$
$$(-\log[A]) = \frac{2.0 \times 10^{-2} \times 100}{2.303}$$
$$[A] = \operatorname{antilog} \left(\frac{2.0 \times 10^{-2} \times 100}{2.303}\right)$$
$$= 0.135 \operatorname{mol} L^{-1}$$

Therefore, the remaining amount of A is $0.135 \text{ mol } L^{-1}$.

25. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law with $t_{1/2} = 3.00$ hours. What fraction of a sample of sucrose remains after 8 hours?

Ans: The given reaction is a first order reaction. So, we can write:

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

We are given a half-life of 3 hours. Therefore, we can write:

$$k = \frac{0.693}{t_{1/2}}$$

So, putting the values in this, we get:

$$k = \frac{0.693}{3} = 0.231 \text{ h}^{-1}$$

Now, we can put this value of rate constant in the first order reaction formula.

$$0.231 = \frac{2.303}{8} \log \frac{[R]_0}{[R]}$$
$$\log \frac{[R]_0}{[R]} = \frac{0.231 \times 8}{2.303}$$
$$\log \frac{[R]_0}{[R]} = 0.8024$$

 $\frac{[R]_0}{[R]} = \text{antilog (0.8024)}$ $\frac{[R]_0}{[R]} = 6.3445$ Or we can write: $\frac{[R]}{[R]_0} = 0.158$

Therefore, the fraction of sample of sucrose that remains after 8 hours is 0.158.

26. The decomposition of hydrocarbon follows the equation $k = (4.5 \times 10^{11} \text{ s}^{-1})e^{-280000 \text{ K/T}}$. Calculate E_a .

Ans: According to the Arrhenius equation, $k = Ae^{-E_a/RT}$

We are given the equation as:

 $k = (4.5 \times 10^{11} \text{ s}^{-1})e^{-280000 \text{ K/T}}$

Therefore, the formula can be written as:

 $-\frac{E_a}{RT} = -\frac{28000 \text{ K}}{T}$ This can be written as: $E_a = 28000 \times \text{R}$ $E_a = 28000 \times 8.314 = 232.79 \text{ kJ mol}^{-1}$ Therefore, the value of E_a is 232.79 kJ mol⁻¹

27. The rate constant for the first order decomposition of H_2O_2 is given by the following equation:

 $\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$

Calculate E_a for this reaction and at what temperature will its half-period be 256 minutes?

Ans: According to the Arrhenius equation, $k = Ae^{-E_a/RT}$ This can be written as:

 $\ln k = \ln A - \frac{E_a}{RT}$ In the log form it can be written as: $\log k = \log A - \frac{E_a}{2.303 \text{ RT}}$ We are given: $\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$ Comparing these two, we get: $\frac{E_{_a}}{2.303 \text{ RT}} = \frac{1.25 \times 10^4 \text{ K}}{\text{T}}$ $E_a = 2.303 \text{ R} \times 1.25 \times 10^4 \text{ K}$ $E_{_a} = 2.303 \times 8.314 \times 1.25 \times 10^4 \ K$ $E_a = 239.34 \text{ kJ mol}^{-1}$ We are given half-life time as 256 minutes. $k = \frac{0.693}{t_{_{1/2}}}$ $k = \frac{0.693}{256 \times 60} = 4.51 \times 10^{-5} \text{ s}^{-1}$ Now, we have the value of rate constant, we can put in the equation:

$$log(4.51 \times 10^{-5}) = 14.34 - \frac{1.25 \times 10^{4}}{T}$$

T = 669 K

The decomposition of A into product has value of k as 4.5×10^3 s⁻¹ at 10°C 28. and energy of activation 60 kJ mol⁻¹. At what temperature would k be $1.5 \times 10^4 \text{ s}^{-1}$?

We are some information: Ans:

$$\begin{split} k_{_1} &= 4.5 \times 10^{_3} \\ T_{_1} &= 10 + 273 = 283 \ K \end{split}$$

$$k_2 = 1.5 \times 10^4$$

 $T_2 = ?$
 $E_a = 60 \text{ kJ mol}^{-1}$
Applying Arrhenius equation:
 $\log \frac{k_2}{2} = \frac{E_a}{2} \left(\frac{T_2 - T_1}{2} \right)$

$$\log \frac{\mathbf{k}_{2}}{\mathbf{k}_{1}} = \frac{\mathbf{L}_{a}}{2.303 \mathrm{R}} \left(\frac{\mathbf{I}_{2} - \mathbf{I}_{1}}{\mathbf{T}_{1} \mathbf{T}_{2}} \right)$$

Putting the values, we can write:

$$\log \frac{1.5 \times 10^{4}}{4.5 \times 10^{3}} = \frac{60}{2.303 \times 8.314} \left(\frac{T_{2}-283}{283T_{2}}\right)$$

$$\log 3.333 = 3133.63 \left(\frac{T_{2}-283}{283T_{2}}\right)$$

$$\frac{0.5228}{3133.63} = \left(\frac{T_{2}-283}{283T_{2}}\right)$$

$$0.0472T_{2} = T_{2} - 283$$

$$T_{2} = 297 \text{ K}$$

Or we can write:
$$T_{2} = 24^{\circ}\text{C}$$

- 29. The time required for 10% completion of a first order reaction at 298 k is equal to that required for its 25% completion at 308 K. If the value of A is 4×10^{10} s⁻¹, Calculate k at 318 K and E_a.
- **Ans:** There are two cases in this question. As the reaction given is first order reaction, we can use:

$$k = \frac{2.303}{t} \log \frac{a}{a-x}$$

For case 1:

$$k_{298K} = \frac{2.303}{t_1} \log \frac{a}{a - 0.10a}$$

$$k_{298K} = \frac{2.303}{t_1} \log \frac{10}{9}$$

$$k_{298K} = \frac{2.303}{t_1} \times 0.0458$$

$$t_1 = \frac{0.1055}{k_{298K}}$$
For case 2:

$$k_{308K} = \frac{2.303}{t_2} \log \frac{a}{a - 0.25a}$$

$$k_{308K} = \frac{2.303}{t_2} \log \frac{4}{3}$$

$$k_{308K} = \frac{2.303}{t_2} \times 0.125$$

$$t_2 = \frac{0.2879}{k_{308K}}$$
But $t_1 = t_2$
Hence,

$$\frac{0.1055}{k_{298K}} = \frac{0.2879}{k_{308K}}$$
k_{308K} = 2.7289
Now, applying the Arrhenius equation,

$$\log \frac{k_{308K}}{k_{298K}} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

$$lag(2.7280) = E_a$$
(308-292)

 $\log(2.7289) = \frac{E_a}{2.303 \times 8.314} \left(\frac{308-298}{298 \times 308}\right)$

 $E_{a} = 76.623 \text{ kJ mol}^{-1}$

Now, the calculation of k at 318 K

$$\begin{split} \log k &= \log A - \frac{E_a}{2.303 \text{RT}} \\ \log k &= \log (4 \times 10^{10}) - \frac{7623}{2.303 \times 8.314 \times 318} \\ \log k &= 10.6021 - 12.5843 = -1.9822 \\ k &= \text{Antilog (-1.9822)} = \text{antilog } (\overline{2}.0178) = 1.042 \times 10^{-2} \text{ s}^{-1} \\ \text{Therefore, } k \text{ is } 1.042 \times 10^{-2} \text{ s}^{-1}. \end{split}$$

30. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Ans: We are given that:

 $k_2 = 4 k_1$ $T_1 = 293K$

$$T_2 = 313K$$

According the Arrhenius equation, we get:

$$\log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{2.303R} \left(\frac{T_{2} - T_{1}}{T_{1}T_{2}} \right)$$

Putting the values, we get:

$$\log \frac{4k_{I}}{k_{I}} = \frac{E_{a}}{2.303 \times 8.314} \left(\frac{313-293}{293 \times 313}\right)$$

$$0.6021 = \frac{E_{a}}{2.303 \times 8.314} \left(\frac{313-293}{293 \times 313}\right)$$

$$E_{a} = \frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$$

$$E_{a} = 52863.00 \text{ J mol}^{-1}$$

$$E_{a} = 52.863 \text{ kJ mol}^{-1}$$

Therefore, the required activation energy is 52.863 kJ mol⁻¹.