

Exercise 2.1

The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

Ans: The graph does not intersect the x-axis at any point. Therefore, it does not have any zeroes.

Ans: The graph intersects at the x-axis at only 1 point. Therefore, the number of zeroes is 1.

(iii)

Ans: The graph intersects at the x-axis at 3 points. Therefore, the number of zeroes is 3.

Ans: The graph intersects at the x-axis at 2 points. Therefore, the number of zeroes is 2.

Ans: The graph intersects at the x-axis at 4 points. Therefore, the number of zeroes is 4.

(vi)

Ans: The graph intersects at the x-axis at 3 points. Therefore, the number of zeroes is 3.

Exercise 2.2

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. $x^2 - 2x - 8$

Given: $x^2 - 2x - 8$. Now factorize the given polynomial to get the roots. $\Rightarrow (x - 4)(x+2)$ Ans: The value of $x^2 - 2x - 8$ is zero. when x - 4 = 0 or x + 2 = 0. i.e., x = 4 or x = -2Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2. Now, Sum of zeroes $= 4 - 2 = 2 = -\frac{2}{1} = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$ \therefore Sum of zeroes $= -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$ Product of zeroes $= 4 \times (-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$.

(i) $4s^2 - 4s + 1$ Ans:Given: $4s^2 - 4s + 1$ Now factorize the given polynomial to get the roots. $\Rightarrow (2s - 1)^2$ The value of $4s^2 - 4s + 1$ is zero. when 2s - 1=0, 2s - 1=0. i.e., $s = \frac{1}{2}$ and $s = \frac{1}{2}$

Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$. Now, Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{(-4)}{4}=\frac{-(\text{Coefficient of s})}{\text{Coefficient of s}^2}$ $\therefore \text{Sum of zeroes} = \frac{-(\text{Coefficient of s})}{\text{Coefficient of s}^2}$ Product of zeroes = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of s}^2}$ $\therefore \text{Product of zeroes} = \frac{\text{Constant term}}{\text{Coefficient of s}^2}.$ (ii) $6x^2 - 3 - 7x$ **Ans:**Given: $6x^2 - 3 - 7x$ $\Rightarrow 6x^2 - 7x - 3$ Now factorize the given polynomial to get the roots. \Rightarrow (3x+1)(2x - 3) The value of $6x^2 - 3 - 7x$ is zero. when 3x+1=0 or 2x-3=0. i.e., $x = \frac{-1}{3}$ or $x = \frac{3}{2}$. Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ and $\frac{3}{2}$. Now, Sum of zeroes = $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$ $\therefore \text{Sum of zeroes} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$ Product of zeroes $=\frac{-1}{3} \times \frac{3}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$ $\therefore \text{Product of zeroes} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$ (iii) $4u^2 + 8u$

Ans:Given: $4u^2 + 8u$ $\Rightarrow 4u^2 + 8u + 0$ $\Rightarrow 4u(u+2)$ The value of $4u^2 + 8u$ is zero. when 4u=0 or u+2=0. i.e., u = 0 or u = -2Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2. Now, Sum of zeroes =0+(-2)=-2= $\frac{-8}{4}$ = $\frac{-(\text{Coefficient of u})}{\text{Coefficient of u}^2}$ \therefore Sum of zeroes= $\frac{-(\text{Coefficient of u})}{\text{Coefficient of u}^2}$ Product of zeroes= $0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of u}^2}$ \therefore Product of zeroes= $\frac{\text{Constant term}}{\text{Coefficient of u}^2}$ (iv) $t^2 - 15$ Ans:Given: $t^2 - 15$ $\Rightarrow t^2 - 0t - 15$

 $\Rightarrow t^{2} - 0t - 15$ Now factorize the given polynomial to get the roots. $\Rightarrow (t - \sqrt{15})(t + \sqrt{15})$ The value of $t^{2} - 15$ is zero. when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, i.e., $t = \sqrt{15}$ or $t = -\sqrt{15}$ Therefore, the zeroes of $t^{2} - 15$ are $\sqrt{15}$ and $-\sqrt{15}$. Now, Sum of zeroes $= \sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(\text{Coefficient of } t)}{\text{Coefficient of } t^{2}}$ \therefore Sum of zeroes $= \frac{-(\text{Coefficient of } t)}{\text{Coefficient of } t^{2}}$ Product of zeroes $= (\sqrt{15}) \times (-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } t^{2}}$.

(v) $3x^2 - x - 4$ Ans:Given: $3x^2 - x - 4$ Now factorize the given polynomial to get the roots. $\Rightarrow (3x - 4)(x + 1)$ The value of $3x^2 - x - 4$ is zero. when 3x - 4 = 0 or x + 1 = 0, i.e., $x = \frac{4}{3}$ or x = -1Therefore, the zeroes of $3x^2 - x - 4$ are $\frac{4}{3}$ and -1.

Now, Sum of zeroes
$$=$$
 $\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
 \therefore Sum of zeroes $=$ $\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$
Product of zeroes $=$ $\frac{4}{3} \times (-1) = \frac{-4}{3} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$
 \therefore Product of zeroes $=$ $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$.

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}, -1$$

Ans:Given: $\frac{1}{4}$,-1

Let the zeroes of polynomial be α and β .

Then,

$$\alpha + \beta = \frac{1}{4}$$
$$\alpha \beta = -1$$

Hence, the required polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$.

$$\Rightarrow x^{2} - \frac{1}{4}x - 1$$
$$\Rightarrow 4x^{2} - x - 4$$

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Ans: Given: $\sqrt{2}, \frac{1}{3}$

Let the zeroes of polynomial be α and β .

Then,

$$\alpha + \beta = \sqrt{2}$$
$$\alpha \beta = \frac{1}{3}$$

Hence, the required polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$.

 $\Rightarrow x^{2} - \sqrt{2}x + \frac{1}{3}$ $\Rightarrow 3x^{2} - 3\sqrt{2}x + 1$ Therefore, the quadratic polynomial is $3x^{2} - 3\sqrt{2}x + 1$.

(iii) $0,\sqrt{5}$ [here, root is missing] Ans:Given: $0,\sqrt{5}$ Let the zeroes of polynomial be α and β . Then, $\alpha+\beta=0$ $\alpha\beta=\sqrt{5}$ Hence, the required polynomial is $x^2 - (\alpha+\beta)x + \alpha\beta$. $\Rightarrow x^2 - 0x + \sqrt{5}$ $\Rightarrow x^2 + \sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1,1

Ans: Given: 1,1 Let the zeroes of polynomial be α and β . Then, $\alpha+\beta=1$ $\alpha\beta=1$ Hence, the required polynomial is $x^2 - (\alpha+\beta)x + \alpha\beta$. $\Rightarrow x^2 - 1x + 1$ Therefore, the quadratic polynomial is $x^2 - x + 1$.

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Ans:Given: $-\frac{1}{4}, \frac{1}{4}$

Let the zeroes of polynomial be α and β . Then,

 $\alpha + \beta = -\frac{1}{4}$

$$\alpha\beta = \frac{1}{4}$$

Hence, the required polynomial is $x^2 - (\alpha + \beta)x + \alpha\beta$.

$$\Rightarrow x^{2} - \left(-\frac{1}{4}\right)x + \frac{1}{4}$$
$$\Rightarrow 4x^{2} + x + 1$$

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4,1 Ans:Given: 4,1 Let the zeroes of polynomial be α and β . Then, $\alpha+\beta=4$ $\alpha\beta=1$ Hence, the required polynomial is $x^2 - (\alpha+\beta)x + \alpha\beta$. $\Rightarrow x^2 - 4x + 1$

Therefore, the quadratic polynomial is $x^2 - 4x + 1$.