
Solutions

Reasoning Ability

Answer is option A

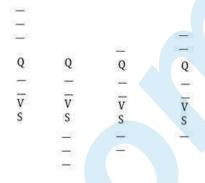
2. Ans. A.

Р	R	0	Α	C	T	I	V	E
A	С	E	I	0	Р	R	Т	V

Hence, option A is correct.

3. Ans. B.

One box is between P and Q. Three boxes are between Q and S. Box V is immediately above box S.


V S	Q
3	-
8 <u>—8</u>	V
\overline{Q}	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_	40
V	$\overline{\mathbf{v}}$	V
V S	S	S
-		200
-		-
Q —	\overline{Q}	\overline{Q}
0.11		1000
1A	1B	1C
Case 2	diagram:	

2A 2B 2C 2D

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	v
S	S	S
V S U	U	R V S U P
R	V S U P	P
Q P	\overline{Q}	\overline{Q}
-		_
P		

1B

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

10

Take case 2:

1A

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
0	_	593
~	Q	Q
R		_
V	R	P
S	S	V S
	U	U
U P	P	O
-		
2B	2C	2D

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

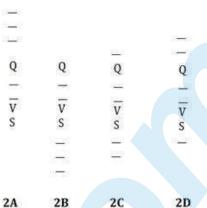
Here is the final arrangement:

R	
T	
Q	
W	
P	
V	
S	
II	

4. Ans. A.

Box R is at the top position.

Three boxes are between Q and S. Box V is immediately above box S.


V S	Q
_	
18 <u>—1</u> 1	V
ō	S

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

1A Case 2	1B diagram:	10
	6.785-66	4.0
-		
0.1		
\overline{Q}	\overline{Q}	\overline{Q}
-		-
	223	200
S	S	S
V	$\overline{\mathbf{v}}$	v

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
V S U	U	R V S U P
R	V S U P	P
Q P	\overline{Q}	$\overline{\mathbf{Q}}$
_ P		_
1A	1B	10

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

2B

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

	, ,	R
Q	_	540
1056 1006	Q	Q
P	\$ 2	
K	R V	P
V		V
R V S U P	S U P	S
U	U	U
P	P	
-		

2C

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

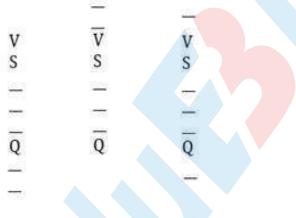
2D

Here is the final arrangement:

R T

S U

5. Ans. B.


> S is at the 2nd last position. Three boxes are between Q and S. Box V is immediately above box S.

V S

Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

1C

1A 1B Case 2 diagram:

_			
_			
S-5			-
			-
Q	Q	Q	Q
-	-		1100
v s	v s	\overline{v}	\overline{v}
S	S	S	S
	-	<u> </u>	
	-	225	

2A 2B

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	S	S
V S U	U	R V S U P
R	R V S U P	P
Q	\overline{Q}	\overline{Q}
Q	Q	Q
P		_

10 1B

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		R
Q	_	59
_	Q	Q
	E 3	
K	R V	P
V		V
R V S	S U P	P V S
U	U	U
U P	P	
_		

2B 2C 2D

There are as many boxes between R and W as

W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R

T

Q

vv

1

S

U

Last but one position - 2nd from the bottom. So, that box is S.

6. Ans. D.

Box T is above box W.

Three boxes are between Q and S. Box V is immediately above box S.

V S	Q
	V
0	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	_	100
V	$\overline{\mathbf{v}}$	v
V S	v s	V S
_		
-	1000	
Q —	\overline{Q}	$\overline{\overline{Q}}$
7700		

1A 1B Case 2 diagram:

_			
_			
_=			-
			2-7
Q	Q	Q	Q
-	-	_	100
v s	v s	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$
S	S	S	S
	-		
	-		
	11.00		

2A 2B 2C 2D Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
v	1000	R V
V S U	V S U P	S U P
U	U	U
R	P	P
\overline{Q}	\overline{Q}	\overline{Q}
P		_

1A 1B 1C

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

2B

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

2D

		R
0	_	597
_	Q	Q
R	-	-
K	R	P
V	R V	v
s	S	S
U	U P	S
U P	P	
-		

2C

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

Here is the final arrangement:

R T Q W P V S

7. Ans. A.

No box is below U.

Three boxes are between Q and S. Box V is immediately above box S.

V	0
Ś	~ —
	V
<u></u>	S

Case 1 Case 2

Now we can see that there is no direct information so we have to create diagram for every possibilities.

Case 1 diagram:

	50.73	
		110
V	$\overline{\mathbf{v}}$	V
V S	V S	V S
-	_	
-	===	man:
-	-	
_ _ Q _	\overline{Q}	\overline{Q}
_		
770		

1A 1B Case 2 diagram:

	Q - v S
Q Q Q Q C	
Q Q Q (
	Q
_	==== ================================

2A 2B 2C 2D

Take Case 1:

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P.

	R	R
V	V	V
S	V S	S
V S U	U	V S U P
R	U P	P
\overline{Q}	\overline{Q}	\overline{Q}
Q P		_
1A	1B	1C

There are as many boxes between R and W as W and S. But no diagram is follow this condition so all cases 1 gets rejected.

Take case 2:

2B

One box is kept between V and U. Box U is below box V. 3 boxes are kept between R and P. Box R is above P. As U is below V so case 2A already gets rejected.

		K
Q	_	570
3056	Q	Q
-		_
R	R	P
V	R V	v
S	S	
U	U P	S
R V S U P	P	
-		

2C

There are as many boxes between R and W as W and S. Only case 2D satisfy this condition.

2D

Here is the final arrangement:

R

T

Q

W

P

V

S

8. Ans. C.

Either conclusion I or conclusion II is true

Explanation:

 $A \ge J = N$; H > Y > I < S = NFrom the statements we have,

 $A \ge J = N$. So, $A \ge N$

Conclusions:

I. A = N

II. A > N

So, I and II are complementary

9. Ans. B.

Only conclusion II is true

Explanation:

 $\overline{U > J \le H = S}; T \le J > F$

From the statements we have,

U > J > F. So, U > F.

Also, $U > J \ge T$. So, U > T

Conclusions:

I. $F \leq U$: it is FALSE

II. U > T: it is TRUE

10. Ans. A.

Only conclusion I is true.

Explanation:

 $Y > U \le H = Q$; $R \le U > M$ From the statements we have, $R \le U \le H = Q$. So, $R \le Q$

Also, $M < U \le H = Q$. So, $R \le Q$

Conclusions:

I. $R \leq Q$: It is TRUE

II. $Q \ge M$: It is FALSE

11. Ans. D.

Neither conclusion I nor conclusion II is true

Explanation:

 $H < S = L \ge F > G \le Q$

From the statements we have,

H < L > G . So, relation between H and G

cannot be established. Also, $L > G \le W$. So, relation between L and

W cannot be established.

Conclusions:

I. H > G: It is FALSE

II. W ≤ L: It is FALSE

12. Ans. B.

Statements: $T > U \ge V \ge W$; X < Y = W > Z

After combining both statements:

 $T > U \ge V \ge W=Y > X$; W = Y > Z

Conclusions: I. Z > U (not true) $\{W > Z \& W \Rightarrow U > Z\}$

II. W < T (true) $\{U > W \& T > U \Rightarrow T > W\}$

Therefore only conclusion II is true.

13. Ans. B.

Given number - 8367284

As per the question - 2' is subtracted from each even digit and '1' is added to each odd digit

8 - 2 = 6

3 + 1 = 4

6 - 2 = 4

7 + 1 = 8

2 - 2 = 0

8 - 2 = 6

4 - 2 = 2

New number formed - is 6448062

Only two digits appear twice in the new number thus formed which is 6 & 4.

14. Ans. D.

Before rearranging as descending

order:935126

After rearranging as descending

order: 965321

9, 5 and 2 are on the same place as before.

So, there are 3 digits

15. Ans. E.

1234567891011 5PONTANEOUS

Meaningful words = NEST, SENT, NETS, TENS

16. Ans. B.

The code for 'mind' is - dh

The codes are given below -

Intellectual - ga

bright - pa/la

and - la/pa

mind - dh students - mt Fresh - ni Clear - mi thoughts -pz/ma in - ma/pz 17. Ans. C. The code for 'bright and clear' - la pa mi The codes are given below -Intellectual - ga bright - pa/la and - la/pa mind - dh students - mt Fresh - ni Clear - mi thoughts -pz/ma in - ma/pz 18. Ans. A. The code 'ni' stand for fresh The codes are given below -Intellectual - ga bright - pa/la and - la/pa mind - dh students - mt Fresh - ni Clear - mi

in - ma/pz 19. Ans. D. The code for 'thoughts' is either - pz/ma The codes are given below -Intellectual - ga bright - pa/la and - la/pa mind - dh students - mt Fresh - ni Clear - mi thoughts -pz/ma in - ma/pz 20. Ans. A. The code 'ga' stand for - Intellectual The codes are given below -Intellectual - ga bright - pa/la and - la/pa mind - dh students - mt Fresh - ni Clear - mi thoughts -pz/ma in - ma/pz 21. Ans. B. R bought car in August. Case 1: If U bought car in June-U bought a car in a month which was having 30 days but not in September. So U bought

thoughts -pz/ma

car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

22. Ans. D.

All the persons bought the car in a month which was having 31 days except P

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons

bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

23. Ans. A.

Only one person bought car between P and R

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

24. Ans. E.

None is correct.

Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Month	Person
June(30)	U
July(31)	Q
August(31)	
September(30)	
October(31)	T
November(30)	
December(31)	

Case 2: If U bought car in November-U bought a car in a month which was having 30 days but not in September, So II bought

30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

Here is the final table:

Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S

25. Ans. B.

2 persons bought car after Q.

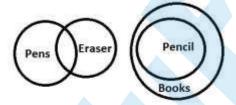
Case 1: If U bought car in June-

U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in October. Two persons bought cars between T and Q so Q bought car in July. P bought car one of the months before Q so this case gets rejected.

Person
U
Q
T

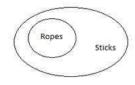
Case 2: If U bought car in November-


U bought a car in a month which was having 30 days but not in September. So U bought car either in June or November.

Three persons bought cars between U and T. So T bought car in July. Two persons bought cars between T and Q so Q bought car in October. Three persons bought cars between Q and P. Two persons bought cars between P and V so V bought car in September. S bought car one of the months after V so S bought car in December and R bought car in August.

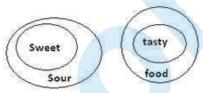
Here is the final table:

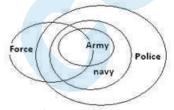
Month	Person
June(30)	P
July(31)	T
August(31)	R
September(30)	V
October(31)	Q
November(30)	U
December(31)	S


26. Ans. D.

Conclusion I is false

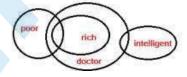
Conclusion II is false


27. Ans. D.



if neither Conclusion I nor II follows.

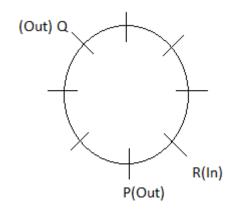
28. Ans. E.



29. Ans. A.

Only **Conclusion** I follows

30. Ans. E.

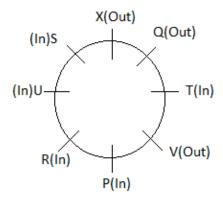


Some intelligent are doctor. So, All intelligent being doctors is a possibility.

31. Ans. C.

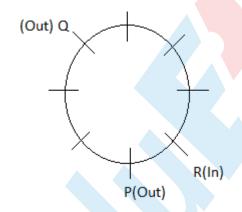
According to first clue, P is either facing inside or outside

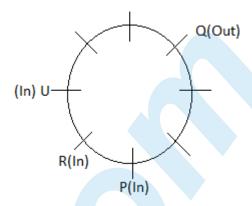
Scenario I: P is facing outside



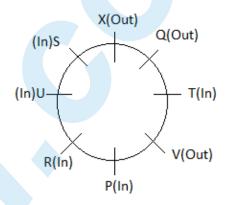
U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

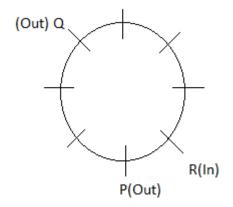

Using the other clues, we get


32. Ans. D.

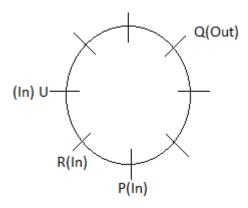
According to first clue, P is either facing inside or outside


Scenario I: P is facing outside

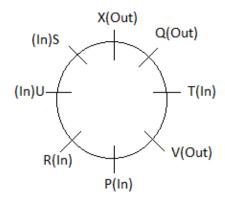
U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside


Using the other clues, we get

33. Ans. D.

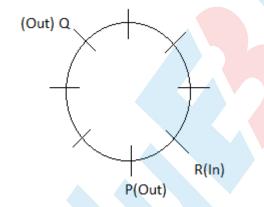

According to first clue, P is either facing inside or outside

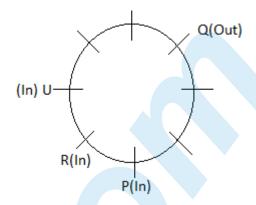
Scenario I: P is facing outside



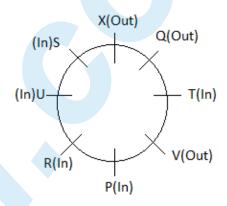
U sits immediate left of R which is not possible in this scenario.

Scenario II: P is facing inside

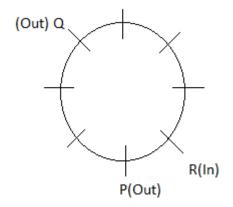

Using the other clues, we get


34. Ans. B.

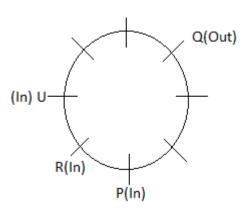
According to first clue, P is either facing inside or outside

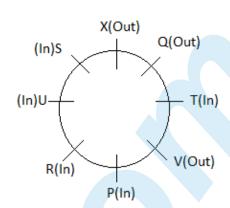

Scenario I: P is facing outside

U sits immediate left of R which is not possible in this scenario. Scenario II: P is facing inside


Using the other clues, we get

35. Ans. B.


According to first clue, P is either facing inside or outside


Scenario I: P is facing outside

 $\mbox{\bf U}$ sits immediate left of $\mbox{\bf R}$ which is not possible in this scenario.

Scenario II: P is facing inside

Using the other clues, we get

36. Ans. C.

All the persons are at the end except B.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row	1		N		M	
Row	2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N		
Row 2				D	

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	Е		D			F

Take case 2A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M it means 3 people are between them but from this

cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

37. Ans. D.

D is facing P.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

	3000						
	Row 1		N		0	M	Q
4	Row 2	Е		D			F

Take case 2A:

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2^{nd} to the right of Q. O is not neighbor of N. The one who is facing O is 2^{nd} to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

		_				
Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

38. Ans. D.

3 persons sit between O and N.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	E		D			F

Take case 2A:

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

39. Ans. B.

R is 3^{rd} to the left of Q.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	E		D			F

Take case 2A:

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

40. Ans. C.

A and M are facing each other.

• Two persons are sitting between M and N. Neither of them is at corner. The one who is facing D is neighbor of N.

Case 1A:

Row 1		N		M	
Row 2	D				

Case 1B:

Row 1	N		M	
Row 2		D		

Case 2A:

Row 1	M		N	
Row 2				D

Case 2B:

Row 1	M		N	
Row 2		D		

Take case 1A:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N	0	M	Q
Row 2	D				F

Take case 1B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the left end. More than two people sit between C and B it means at least 3 people sit between C and B from this cannot be possible so this case gets rejected.

Row 1		N		0	M	Q
Row 2	E		D			F

Take case 2A:

2 people sit between E and the one who is facing M it means 3 people are between them but from this cannot be possible so this case gets rejected.

Row 1	0	M	Q	N	
Row 2			F		D

Take case 2B:

O is 2nd to the right of Q. O is not neighbor of N. The one who is facing O is 2 nd to the left of F. More than 2 people sit between E and the one who is facing M so E must be at the right end. More than two people sit between C and B it means at least 3 people sit between C and B so either C or B at the left end. P is not at any corner so P is facing D and R must be at the end. The immediate neighbor of R is facing B it means N is facing B and C must be at the end and A is facing M.

Here is the final arrangement:

Row 1	0	M	Q	P	N	R
Row 2	С	A	F	D	В	Е

Quantitative Aptitude Solutions

1. Ans. B.

$$131 - 64 = 67$$

$$67 - 32 = 35$$

$$35 - 16 = 19$$

$$19 - 8 = 11$$

$$11 - 4 = 7$$

2. Ans. C.

$$25 + 3 = 28$$

$$28 - 6 = 22$$

$$22 + 9 = 31$$

$$31 - 12 = 19$$

$$19 + 15 = 34$$

Ans. A. 3.

$$7 \times 0.5 + 1 = 4.5$$

$$4.5 \times 1 + 1.5 = 6$$

$$6 \times 1.5 + 2 = 11$$

$$11 \times 2 + 2.5 = 24.5$$

4. Ans. B.

$$1 + 3 = 4$$

$$4 + 5 = 9$$

$$9 + 9 = 18$$

$$18 + 17 = 35$$

Again we have to check here -

$$3 + 2 = 5$$

$$5 + 4 = 9$$

$$9 + 8 = 17$$

$$17 + 16 = 33$$

We will add 33 in 35 = 68

5. Ans. D.

$$3.5 \times 2 - 3 = 4$$

$$4 \times 3 - 4 = 8$$

$$8 \times 4 - 5 = 27$$

$$27 \times 5 - 6 = 129$$

$$129 \times 6 - 7 = 767$$

6.

$$2x^2 + 11x + 14 = 0$$

 $2x^2 + 4x + 7x + 14 = 0$

$$2x(x+2) + 7(x+2) = 0$$

$$(x+2)(2x+7) = 0$$

i.e.
$$x = -2 \text{ or } -7/2$$

$$2y^2 + 13y + 21 = 0$$

 $2y^2 + 6y + 7y + 21 = 0$

$$2y(y+3) + 7(y+3) = 0$$

$$(2y+7)(y+3) = 0$$

i.e.
$$y = -3 \text{ or } -7/2$$

Thus, Relationship cannot be established.

7. Ans. B.

$$x^2 - 9x + 20 = 0$$

$$x^2 - 5x - 4x - 20 = 0$$

$$(x-5)(x-4) = 0$$

i.e.
$$x = 4 \text{ or } 5$$

$$y^2 = 16$$

$$y = (16)1/2$$

$$y = 4 \text{ or } -4$$

Thus,
$$x >= y$$

8. Ans. C.

$$x^2 - 7x + 12 = 0$$

$$x^2 - 4x - 3x + 12 = 0$$

$$x (x-4) -3 (x-4) = 0$$

i.e.
$$x = 3 \text{ or } 4$$

$$y^2 - 11y + 30 = 0$$

$$y^2 - 5y - 6y + 30 = 0$$

$$y (y-5) -6 (y-5) = 0$$

i.e.
$$y = 5 \text{ or } 6$$

Thus,
$$y > x$$

9. Ans. C.

$$x^2 - 8x + 15 = 0$$

$$x^2 - 5x - 3x + 15 = 0$$

$$x(x-5) - 3(x-5) = 0$$

i.e.
$$x = 5$$
 or 3
 $y^2 - 12y + 36 = 0$
 $y^2 - 6y - 6y + 36 = 0$
 $y (y-6) - 6 (y-6) = 0$
i.e. $y = 6$
Thus, $y > x$

10. Ans. E.

$$2x^{2} + 9x + 7 = 0$$

 $2x^{2} + 7x + 2x + 7 = 0$
 $x (2x+7) + 1 (2x+7) = 0$
i.e. $x = -1$ or $-7/2$
 $y^{2} + 4y + 4 = 0$
 $y^{2} + 2y + 2y + 4 = 0$
 $y (y+2) + 2 (y+2) = 0$
i.e. $y = -2$

Thus, Relationship cannot be established between X & Y.

11. Ans. A.

Required Average = (3750+3000+2500+3750+3500)/5 = 3300

12. Ans. B.

Total number of students (males and females together) in University P = (3000 + 3750) = 6750

Total number of students (males and females together) in University R = 2500+4250 = 6750

Ratio = 1:1

13. Ans. B.

Required ratio = (3750 + 3000): (4250 + 2750) = 27 : 28

14. Ans. D.

Required percentage = [4000/(3750+3000+2500+3750+3500)]*100 = (4000/16500)*100 = 24% (approx)

15. Ans. C.

Required number = 2750 + 50% of 2750 + 3500 = 7625

16. Ans. A.

Number of teachers in physics subject = 1800

$$\times \frac{17}{100}$$

= 306

Number of female teachers in physics = $306 \times$

 $\frac{2}{9}$

= 68

Number of male teachers in physics = 306 - 68

= 238

Number of teachers in chemistry subject =

$$\begin{array}{r}
 23 \\
 1800 \times 100 \\
 = 414
 \end{array}$$

238

Required percentage = 414 = 57 % (approx).

17. Ans. B.

Number of teachers in Chemistry subject = $1800 \times 23\% = 414$

Number of teachers in English subject = $1800 \times 27\% = 486$

Number of teachers in Biology subject = $1800 \times 12\% = 216$

Required number = 414 + 486 + 216 = 1116

18. Ans. B.

Total number of teachers English and Physics = 486 + 306= 792

Total number of teachers Mathematics and Biology = 234 + 216= 450

Required difference = 792 - 450 = 342

19. Ans. E.

Number of teachers in Mathematics subject= 1800×13% = 234 Number of teachers in Hindi subject =

 $1800 \times 8\% = 144$

Required ratio = 234 : 114 = 13 : 8

20. Ans. C.

Number of increased Mathematics teachers = $234 + 234 \times 50\% = 351$

Number of decreased Hindi teachers = $144 - 144 \times 25\% = 108$

Required total number = 351 + 108 = 459

21. Ans. A.

Average number of students, who appeared for Physics from the year, 2011 to 2015 = (650 + 250 + 350 + 600 + 350)/5 = 440

22. Ans. D.

Total number of students who appeared for Physics from 2013 to 2015 = (350 + 600 + 350) = 1300

Total number of students, who appeared for Chemistry from 2011 to 2013 = (800 + 630 + 550) = 1980

Required ratio = 1300 : 1980 = 65:99

23. Ans. B.

Students who did not pass in Physics in the year 2011 = 70/100 * 650 = 455Students who did not pass in Physics in the year 2015 = 30/100 * 350 = 105Average = (455 + 105)/2 = 280

24. Ans. D.

Total number of students, who passed in Chemistry in 2011 = 50/100 * 800 = 400Total number of students who did not pass in Physics in 2015 = 30/100 * 350 = 105Difference = 400 - 105 = 295

25. Ans. B.

Total number of students who did not pass Physics in 2013 = 50/100 * 350 = 175Total number of students who did not pass Chemistry in 2013 = 80/100 * 550 = 440Percentage = 175/440 * 100 = 39.77% =40%

26. Ans. A.

Take nearest values $21.003 \times 39.998 - 209.91 = 126 \times ?$ $630 = 126 \times ?$? = 5 (approx)

27. Ans. C.

 $(\frac{47}{100} \times 1442 - \frac{36}{100} \times 1412) \div 63$ $= (677.74 - 508.32) \div 63 = 169.42/63 =$ 2.689 = 3 (Approx)Hence option C is correct

28.

? =
$$2418.065 + 88 \div 14.2 \times 6$$

? = $2418.065 + 88 \times \frac{1}{14.2} \times 6$

 $? = 2418.065 + 6.197 \times 6$

? = 2418.065 + 37.18

? = 2455.25

? = 2455 (Approx.)

29. Ans. E.

 $1200 \div 15 \times 20 + 400 = 80 \times 20 + 400$ = 1600 + 400 = 2000 (Approx)

Hence option E is correct

30. Ans. E.

$$? = 726 \times \frac{15.2}{100} \times 643 \times \frac{12.8}{100}$$

 $= 110.352 \times 82.304$

= 9082.41

≈ 9082 (approx)

31. Ans. A. Third Number = $(128 \times 5) - (118 \times 2) - (126)$ \times 2) = 152

32. Ans. A.

> Let present age of Anita= 'x' years And present age of Bablu= 'y' years

Now,
$$\frac{x-4}{2} = 5/12$$

 $12x - 48 = 40y - 160$
 $3x - 10y + 28 = 0$ (i)

And,

$$\frac{1}{2}(x+8)=(y+8)-2$$

$$x+8=2y+12$$

$$x-2y=4$$
(ii)

Now, from eqn. (i) & (ii) Bablu present age, Y=10 years

Ans. B.

Let 100 (CP)

80 (SP) 110 (SP)

Diff. 30

30 units \rightarrow 24

1 unit \rightarrow 30

100 units
$$\rightarrow \frac{24}{30} \times 100 = \text{Rs. } 80$$

CP = Rs. 80

34. Ans. A.

A started a business with investing Rs. 8000 and after some months, B joined with investing Rs. 5000.

Equivalent capital of A

 $= Rs. 8000 \times 12$

= Rs. 96000

Let B joined after x months.

So, equivalent capital of B

 $= Rs. 5000 \times (12 - x)$

= Rs. 60000 - 5000x

Total profit after one year = Rs. 4250

Share of A = Rs. 3000. Then, the share of B =

Rs. 4250 - 3000 = Rs. 1250

So, the ratio of their share;

A : B = 3000 : 1250 = 12 : 5

Now, we can write,

96000/(60000 - 5000x) = 12/5

 \Rightarrow 60000 - 5000x = 96000 × (5/12)

 \Rightarrow 60000 - 5000x = 8000 × 5

 $\Rightarrow 5000x = 60000 - 40000$

 \Rightarrow x = 20000/5000 \Rightarrow x = 4

: After 4 months, B joined in the business.

35. Ans. D.

Let the length of train P and Q are 5a and 4a. speed of train P = 5a/6

therefore,

$$(5a/6 + 21)*4 = 5a/3 + 4a$$

$$-5a/3 + 4a = 84$$

a = 36

speed of train P = 36*5/6 = 30m/s

36. Ans. D.

Total no of balls = 8 + 7 + 6 = 21

Let, E be the event where the ball can be selected which is neither yellow nor black Number of events where the ball can be selected which is neither yellow nor black = $7 \cdot P(E) = 7/21 = 1/3$

37. Ans. D.

Ratio of days of B and C = 2:1

$$\frac{1}{A} + \frac{1}{B} = \frac{1}{60} \dots 1$$

$$\frac{1}{A} + \frac{1}{C} = \frac{1}{45} \dots 2$$

$$\frac{1}{A} + \frac{2}{B} = \frac{1}{45} \dots 3$$

1) and 2)

$$\frac{1}{B} = \frac{1}{180} \Rightarrow B = 180 \, days$$

From equation 1) A = 90 days, and C = 90 days

One day work of A, B and C

$$= \frac{1}{90} + \frac{1}{90} + \frac{1}{180} = \frac{2+2+1}{180} = \frac{1}{36}$$

Days = 36 days.

38. Ans. B.

First and second varieties of pulses are mixed in equal proportions

:.Their average price = INR (32+45)/2 = INR 38.5/kg

Let the price of third variety pulse be INR x/kg

The mixture is formed by mixing two varieties becomes one at INR 38.5/kg

By the rule of allegation:

Cost of 1 kg of 3rd variety

Mean price INR 88

$$\frac{x-88}{3} = \frac{1}{1}$$

49.5

$$\Rightarrow$$
 x - 88 = 49.50 \Rightarrow x = 137.50

Hence, the price of the third variety per kg will be INR 137.50/kg

39. Ans. D.

The time required to travel a certain distance upstream is five times than that of downstream for the same distance.

Let the speed of the boat in upstream be x km/hr. and in downstream be 5x km/hr.

We know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed in still water = $1/2 \times (x + y)$ km/hr.

So, the speed of the boat in still water

- $= 1/2 \times (x + 5x) \text{ km/hr}.$
- $= 1/2 \times 6x \text{ km/hr.}$
- = 3x km/hr.

Given, the speed of a boat in still water is (27/4) km/hr.

So, we can write now,

$$3x = 27/4$$

$$\Rightarrow x = 9/4$$

So, the speed of the boat in upstream = 9/4 km/hr.

And the speed of the boat in downstream = $5 \times (9/4) \text{ km/hr.} = 45/4 \text{ km/hr.}$

Again, we know that if the speed of the downstream is x km/hr and the speed of the upstream is y km/hr, then the speed of the stream = $1/2 \times (x - y) \text{ km/hr}$.

- \therefore The speed of the stream = $1/2 \times [(45/4) (9/4)]$ km/hr.
- $= 1/2 \times 9 \text{ km/hr}.$
- = 9/2 km/hr.
- = 4.5 km/hr.
- 40. Ans. C.

Curved Surface Area of Cylinder = $2\pi rh$ Total Surface Area of Cylinder = $2\pi r (h+r)$ According to question, $2\pi rh : 2\pi r (h+r) = 3:5$

i.e.
$$h/(h+r) = 3/5$$

i.e.,
$$2h = 3r - (a)$$

Also, Curved surface area of the cylinder = 1848 metre square

i.e.
$$2\pi rh = 1848$$

From (a),
$$2\pi (2/3h) * h = 1848$$

On solving the above equation, h = 21m