Acids, Bases& Salts Concepts of Acids and Bases

Arrhenius Theory:

This concept was presented in 1884.

According to this theory all substances which give H^+ ions when dissolved in water are called

acids, while those which ionise to give $\mathrm{OH}^{\text{-}}$ ions are called bases.

The H⁺ ions do not exist as such and exist in combination with molecules of H_2O as H_3O^+ ions (Known as hydronium ion).

$$H^+ + H_20 H_30^+$$

HCl + H₂0 H₃0⁺ + Cl⁻

e.g.

 $HA + H_2O H_3O^+ + A^-$ Acid

 $H_2SO_4 + 2H_2O 2H_3O^+ + SO_4^{-2}$

```
Acid
```

```
BOH + H2O B^+ + OH^-
```

Base

 $NaOH + H_2O Na^+ + OH^-$

Base

$$NH_4OH NH_4^+ + OH^-$$

Base

A) Limitations of Arrhenius theory:

The concept does not explain the acidic or basic properties of acids or bases in nonaqueous solvents. It fails to explain acidic nature of non - protic compounds like SO₂, P₂O₅, CO₂, NO₂ etc.

Which do not have hydrogen in their molecules to furnish H^+ ions.

It fails to explain acidic nature of certain salts like AlCl₃ etc., in aqueous solutions.

Chemistry

Example:

Which of the following is not the characteristics of an acid-

(a) Turns blue litmus to red

(b) Turns phenolphthalein pink from colourless

- (c) Decompose carbonates
- (d) Oxy compounds of non-metals

Solution :

Correct answer is (B) Refer (1.1) preliminary classification of acid & bases.

Option (b) indicates characteristic of bases.

Example :

Arrhenius theory of acid-base is not applicable in

(a) aqueous solution

- (b) In presence of water
- (c) Non-aqueous solutions
- (d) None of the above

Solution :

Correct answer is (C), since Arrhenius theory is only applicable to aqueous media.

B) Acid Base Concept of Bronsted and Lowry :

The theory was given by Bronsted, a Danish chemist and Lowry, an English chemist independently in 1923. According to it an acid is a substance, molecule or ion which has a tendency to release the proton (protogenic) and similarly a base has a tendency to accept the proton (protogenic).

e.g.

$HCl + H_2O H_3O^+ + Cl^-$

In the reaction, HCl acts an as acid because it donates a proton to the water molecule. Water, on the other hand, behaves as a base by accepting a proton.

Chemistry

Bronsted and lowry theory is also known as proton donor and proton acceptor theory. Other examples:

> $CH_3COOH + H_2O H_3O^+ + CH_3COO^ NH_4^+ + H_2O H_3O^+ + NH_3$ $NH_3 + H_2O NH_4^+ + OH^-$

In the reaction (i) and (ii) water is acting as a base, while in reaction (iii) it is acting as an acid. Thus water can donate as well as accept H^+ and can act as both acid and base.

Example :

Suitable reason (s) for higher strength of an acid or base will be -

(a) Higher value of K_a or K_b

(b) Higher extent of ionisation

(c) (a) and (b) both

(d) Larger number of replaceable H atoms.

Solution :

Correct answer is (C), both K_a or K_b and degree of ionisation are the measure of strength of an acid or base.

Example :

The basicity of phosphorous acid is -

(a) 1 (b) 2 (c) 3 (d) 4

Solution :

Correct answer is (B) since Phosphorous acid is H₃PO₃ which has two replaceable

H⁺ ions.

The species like H_2O , NH_3 , CH_3COOH which can act as both acid and base are called amphiprotic.

Moreover according to theory, an acid on losing a proton becomes a base, called **conjugate base**, while the base by accepting proton changes to acid called **conjugate acid**.

Here CH_3COO^- ion is conjugate base of CH_3COOH^- , while H_3O^+ ion is conjugate acid of H_2O .

List of
Acid–Base

CH ₃ COOH + H ₂ O Acid I Base II Base I Acid II Ioses H ⁺		
$Acid = Base + H^+$	$Base = Acid - H^+$	
HClO ₄ (perchloric	ClO ₄	
acid)	(perchlorate ion)	
HI (hydriodic acid)	I (Iodine ion)	
HBr (hydrobromic acid)	Br (bromine ion)	
HCl (hydrochloric acid)	Cl (chloride ion)	
H ₂ SO ₄ (sulphuric	HSO	
acid)	(hydrogensulphate ion)	
NHO ₃ (Nitric acid)	NO_3^- (nitrate ion)	
H_3O^+ (hydronium ion)	H ₂ O (water)	
HSO ₄ ⁻ (hydrogen	SO_4^{-2} (sulphate	
sulphate ion)	ion)	
HF (hydro fluoric acid)	F (fluorine ion)	

accepts H[⁺]

some common conjugate pairs:

Chemistry

$Acid = Base + H^+$	$Base = Acid - H^+$
HNO ₂ (nitrous acid)	NO_2^- (nitrite ion)
HCOOH (formic acid)	HCOO (formate ion)
CH ₃ COOH (acetic acid)	CH ₃ COO (acetate ion)
NH_4^- (ammonium ion)	NH ₃ (ammonia)
H ₂ O (water)	OH (hydroxide ion)
NH ₃ (ammonia)	$\rm NH_2^-$ (amide ion)

Classification of Bronsted Lowry Acid & Bases:

Туре	Acid	Base
Molecular	HCl, HNO ₃ ,	NH ₃ ,
	HClO ₄ ,	N_2H_4 ,
	H_2SO_4 ,	Amines,
Cationic	H_3PO_4 ,	H_2O ,
	CH ₃ COOH,	Alcohol,
	HBr, H_2O etc.	Ethers
	\mathbf{NH}_{4}^{+} ,	
	$\mathbf{N} \mathbf{H}^+ \mathbf{P} \mathbf{H}^+$	$[Fe(H_2O)_5]$
Anionic	$1_{2}1_{5}, 1_{4},$	$OH]^{2+}$
	Na, Ba - (All	$[Al(H_2O)_5]$
	cations) $(II \cap 1^{3+})$	$[OH]^{2\mp}$
	$[Fe(H_2O)_6]$,	
	$[A1(H_2O)_6]$,	
	$[AI(H_2O)_6]$,	Cl ⁻ , Br ⁻ ,
	HS^{-} , HSO_{3}^{-} ,	OH ⁻ ,
	$H_2SO_4^-$,	HSO_4^-
	HSO ⁻	CH⁻,
		CO_{2}^{2-} .
	HCO_3 ,	SO^{2-}
	HPO_4^{2-} , all	50_4 ,
	amphiprotic	$\mathrm{NH}_{2}^{-},$
	anions	CH ₃ COO
		H^{-}

Reactions in Non-aqueous solvents:

- (i) Solvents like C₆H₆, CCl₄, THF (Tetrahydrofuran), DMF (N, N dimethyl formamide) etc. are used in organic chemistry. In Inorganic chemistry reactions are generally studied in water. However a large number of nonaqueous solvents (such as Glacial acetic acid, Hydrogen halides, SO₂ etc.) have been introduced in Inorganic chemistry.
- (ii) The physical properties of a solvent such as M.P., B.P., Dipole moment and Dielectric constant are important in deciding its be haviour.

Lux - Flood Concept (1939 & 1947) :

- (i) The proton plays an important role in explaining the acid-base behaviour in the Bronsted-Lowery Concept. Lux observed that acid – base reactions are also feasible in oxide systems without the aid of protons.
- (ii) Above approach was extended by Flood and applied to non-protonic systems, which were not covered by the Bronsted Lowery Concept.
- (iii) According to this concept a base (like CaO, BaO, Na₂O) is an oxide ion (O^{2-}) donor and an acid

(like SiO₂, CO₂ or P₄O₁₀) is an oxide ion (0^{2-}) acceptor.

e.g.	Base	Acid
	(a) $CaO + SiO_2$	CaSiO ₃
	(b) Ca0 + P_4O_{10}	4Na ₃ PO ₄

(iv) Substances are termed amphoteric if they show a tendency of losing as well as accepting an oxide ion.

e.g. ZnO, Al_2O_3

Example :

The aprotic solvent is –

(a) H_2O (b) C_6H_6 (c) HF (d) NH_3 Solution : Correct Answer is (b)

Example :

Which of the following is the strongest conjugate base

(a) Cl ⁻	(b) CH ₃ COO⁻	(c) kk	(d) kl+

Solution :

Correct answer is (b), since CH₃COOH is weakest acid among HCl, CH₃COOH, and HNO₂

Example :

The strongest Bronsted base in the following anions is

Solution :

Correct answer is (a), since HClO is weakest acid among HClO, HClO₂, HClO₃ and HClO₄.

Example :

Urea can show weak acidic nature in liquid $\rm NH_3$ solution . Write appropriate equation and label as

acid & base.

Solution :

 $\rm NH_2CONH_2 + NH_3 + NH_2CONH^-$

Urea

Acid base

(c) Lewis theory :

The theory was given by G.N.Lewis in 1938. According to it, an acid is a species which can accept a pair of electrons, while the base is one which can donate a pair of electrons.

It is also known as electron pair donor and electron pair acceptor theory.

e.g.

(i) FeCl₃ and AlCl₃ are Lewis acids, because the central atoms have only six electrons after sharing and need to have more electrons.

(ii) NH₃ is a Lewis base as it has a pair of electrons which can be easily donated.

Lewis acids: CH_3^+ , H^+ , BF_3 , $AlCl_3$, $FeCl_3$, etc.

Chemistry

Lewis bases :- NH₃, H₂O, R-O-R, R - OH, CN⁻, OH⁻ etc.

(i) Characteristics of species which can act as Lewis acid :

Molecules with vacant orbitals :

Lewis acids are electron deficient molecules such as BF₃, AlCl₃, GaCl₃ etc.

* Molecules in which the central atom has incomplete octet :

The central atom of the halides such as TiCl₄, SnCl₄, PCl₃, PF₅, SF₄, TeCl₄. etc., have

vacant d-orbitals. These can, therefore, accept an electron pair and act as Lewis acids.

SiF ₄ +	2 F. —	$\rightarrow [SiF_6]^{2}$
Lewis	Lewis	complex
acid	base	

✤ Simple cation :

All cations are expected to act as Lewis acid, since they are electron deficient in nature.

$$Ag^{+} + 2 \overset{\cdots}{N}H_{3} \rightarrow [H_{3}N \rightarrow Ag \leftarrow NH_{3}]^{+}$$
$$Fe^{2+} + 6CN^{-} \rightarrow [Fe(CN)_{6}]^{4-}$$

✤ Molecules having a multiple bond between atoms of dissimilar electronegativity :

Typical examples of molecules belonging to this class of acids are CO_2 , SO_2 , and SO_3 .

(ii) Characteristics of species which can act as Lewis bases :

□ Netural species having at least one lone pair of electrons :

For example, ammonia amines, alcohols etc., act as Lewis bases as they contain a pair of electrons.

$$: \mathrm{NH}_3, \mathrm{R} - \mathrm{NH}_2, \mathrm{R} - -\mathrm{H}, \mathrm{H} - -\mathrm{H}, \mathrm{R} - -\mathrm{R}$$

□ Negatively charged species or simple anions: For example chloride (Cl⁻), cyanide (CN⁻)

Chemistry

hydroxide (OH⁻) ions etc. act as Lewis bases.

Multiple bonded compounds: The compounds such as CO, NO, Ethylene, acetylene etc.
can act as Lewis bases.