
CLASS 10 MATHS

COORDINATE GEOMETRY

AREA OF TRIANGLE

AREA OF A TRIANGLE:

Let ABC be any triangle whose vertices are $A(x_1, y_1) B(x_2, y_3)$. Draw BL, AM and CN perpendicular from B,A and C respectively, to the X-axis. ABLM, AMNC and BLNC are all trapeziums.

Area of $\triangle ABC$ = Area of trapezium ABLM + Area of trapezium AMNC - Area of trapezium BLNC We know that, Area of trapezium = $\frac{1}{2}$ (Sum of parallel sides) (distance b/w them)

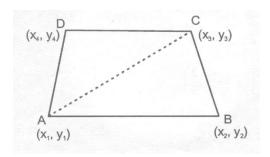
Therefore

Area of
$$\triangle ABC = \frac{1}{2}(BL + AM)(LM) + \frac{1}{2}(AM + CN)MN - \frac{1}{2}(BL + CN)(LN)$$

Area of
$$\triangle ABC = \frac{1}{2} (y_2 + y_1) x_1 - x_2) + \frac{1}{2} (y_1 + y_3) (x_3 - x_1) - \frac{1}{2} (y_2 + y_3) (x_3 - x_2)$$

Area of
$$\triangle ABC = \frac{1}{2} |[x_1(y_2 - y_3) + x_2(y_3 - y) + x_3(y_1 - y_2)]|$$

(a) Condition for collinearity :


Three points A (x_1, y_1) B (x_2, y_2) and C (x_3, y_3) are collinear if Area of \triangle ABC = 0.

CLASS 10 MATHS

AREA OF QUADRILATERAL:

Let the vertices of Quadrilateral ABCD are $A(x_1,y_1)$, $B(x_2,y_2,C(x_3,y_3))$ and $D(x_4,y_4)$

So, Area of quadrilateral ABCD = Area of \triangle ABC + Area of \triangle ACD

- **Ex.1** The vertices of \triangle ABC are (-2, 1), (5, 4) and (2, -3) respectively. Find the area of triangle.
- **Sol.** A(-2, 1), B(-2, 1) and C(2, -3) be the vertices of triangle.

So,
$$x_1 = -2$$
, $y_1 = 1$; $x_2 = 5$, $y_2 = 4$; $x_3 = 2$ $y_3 = -3$

Area of
$$\triangle$$
 ABC = $\frac{1}{2}$ [$x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)$]
= $\frac{1}{2}$ [(-2)(4+3)+(5)(-3-1)+2(1-4)]
= $\frac{1}{2}$ [-14+(-20)+(-6)]
= $\frac{1}{2}$ |-40
= 20 Sq. unit.

- **Ex.2** The area of a triangle is 5. Two of its vertices area (2, 1) and (3, -2). The third vertex lies on y = x + 3. Find the third vertex.
- **Sol.** Let the third vertex be (x_3, y_3) area of triangle

$$= \frac{1}{2} \left[\left[x_1 (y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right] \right.$$

CLASS 10

As
$$x_1=2\ y_1=1$$
 ; $x_2=3$, $y_2=-2$; Area of $\Delta=5$ sq. unit

$$\Rightarrow$$
 5= $\frac{1}{2}$ |2(-2-y₃)+3(y₃-1)+x₃(1+2)|

$$\Rightarrow 10 = |3x_3 + y_3 - 7|$$

$$\Rightarrow$$
 3x₃ + y₃ - 7 = ± 10

Taking positive sign

$$3x_3 + y_3 - 7 = 10$$
 \Rightarrow $3x : + y_3 = 17$ (i)

Taking negative sing

$$\Rightarrow$$
 3x₃ + y₃ - 7 = -10

$$\Rightarrow 3x : +y_3 = -3 \qquad(ii)$$

Given that (x_3, y_3) lies on y = x + 3

So,
$$-x : +y_3 = 3$$
(iii)

Solving eq. (i) & (iii)

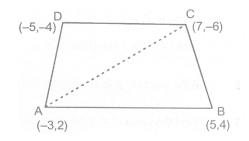
$$x_3 = \frac{7}{2}$$
, $y_3 = \frac{13}{2}$

Solving eq. (ii) & (iii)

$$x_3 = \frac{-3}{2}$$
, $y_3 = \frac{3}{2}$

So the third vertex are $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(\frac{-3}{2}, \frac{3}{2}\right)$

CLASS 10


Ex.3 Find the area of quadrilateral whose vertices, taken in order, are (-3, 2), B(5, 4), (7, -6) and D(-5, -4).

Sol. Area of quadrilateral = Area of \triangle ABC + Area of \triangle ACD

So, Area of
$$\triangle ABC = \frac{1}{2} | (-3)(4+6)+5(-6-2)+7(2-4) |$$

$$= \frac{1}{2} | -30-40-14 |$$

$$= \frac{1}{2} | -84=42 \text{Sq unit}$$

Area of
$$\triangle$$
 ACD = $\frac{1}{2}$ |-3(-6+4)+7(-4-2)+(-5)(2+6)|
$$=\frac{1}{2}$$
|+6-42-40= $\frac{1}{2}$ |-76=385q unit

So, Area of quadrilateral ABCD = 42 + 38 = 80 Sq. units.