TRIANGLES

PYTHAGOREAN THEOREM

PYTHAGOREOUS THEOREM :

Statement :	In a right triangle, the square of the hypotenuse is equal to the sum of the	
	square of the other two sides.	
Given :	A right triangle ABC, right angled at B.	B
To prove :	$AC^2 = AB^2 + BC^2$	
Construction	: BD \perp AC	D
Proof:	Δ ADB & Δ ABC	
	$\angle DAB = \angle CAB$	[Common]
	$\angle BDA = \angle CBA$	[90 ⁰ each]
	So, $\triangle ADB \sim \triangle ABC$	[By AA similarity]
	$\frac{AD}{AB} = \frac{AB}{AC}$	[Sides are proportional]
	or, $AD \cdot AC = AB^2$	(i)
	Similarly \triangle BDC ~ \triangle ABC	
	So, $\frac{CD}{BC} = \frac{BC}{AC}$	
	or $CD \cdot AC = BC^2$	(ii)
	Adding (i) and (ii),	
	$AD \cdot AC + CD \cdot AC = AB^2 + BC^2$	

MATHS

- or, $AC (AD + CD) = AB^2 + BC^2$
- or $AC.AC = AB^2 + BC^2$
- or, $AC^2 = AB^2 + BC^2$
- Hence Proved.

(A) CONVERSE OF PYTHAGOREANS THEOREM :

Statement : In a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angle opposite to the first side is a right angle.

Given : A triangle ABC such that $AC^2 = AB^2 + BC^2$

Construction : Construct a triangle DEF such that DE = AB, EF = BC and $\angle E = 90^{\circ}$

Proof : In order to prove that $\angle B = 90.^{0}$, it is sufficient to show $\triangle ABC \sim \triangle DEF$. For this we proceed as follows Since $\triangle DEF$ is a right - angled triangle with right angle at E. Therefore, by Pythagoras theorem, we have

 $DF^2 = DE^2 + EF^2$

 \Rightarrow DF² = AB² + BC² [: DE = AB and EF = BC (By construction)]

- $\Rightarrow DF^2 3 = AC^2 \qquad [:: AB^2 + BC^2 = AC^2 \text{ (Given)}]$
- \Rightarrow DF = AC(i)

Thus, in \triangle ABC and \triangle DEF, we have

AB = DE, BC = EF		[By construction]
And	AC = DF	[From equation (i)]

$$\therefore \quad \Delta ABC \cong \Delta DEF$$
 [B

[By SSS criteria of congruency]

 $\Rightarrow \qquad \angle B = \angle E = 90^{0}$

Hence, $\triangle ABC$ is a right triangle, right angled at B.

(B) SOME RESULTS DEDUCED FROM PYTHAGOREANS THEOREM :

(i) In the given figure $\triangle ABC$ is an obtuse triangle, obtuse angled at B. If AD $\perp CD$,

then $AC^2 = AB^2 + BC^2 + 2BC \cdot BC$

(ii) In the given figure, if $\angle B$ of $\triangle ABC$ is an acute angle and AD $\perp BC$, then

$$AC^2 = AB^2 + BC^2 - 2BC \cdot BD$$

- (iii) In any triangle, the sum of the squares of any two sides is equal to twice the square of half of the third side together with twice the square of the median which bisects the third side.
- (iv) Three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares o the medians of the triangle.

Ex.1

MATHS

[CBSE - 2002]

area (\triangle ABC) = $\sqrt{3}a^2$ (i) $AD = a\sqrt{3}$ (ii) (i) Here, $AD \perp BC$. Sol. Clearly, \triangle ABC is an equilateral triangle. Thus, in $\triangle ABD$ and $\triangle ACD$ AD = AD[Common] [90⁰ each] $\angle ADB = \angle ADC$ And AB = ACD 2a by RHS congruency condition $\triangle ABD \cong \triangle ACD$ BD = DC = a \Rightarrow Now, $\triangle ABD$ is a right angled triangle $AD = \sqrt{AB^2 - BD^2}$ ÷ [Using Pythagoreans Theorem] $AD = \sqrt{4a^2 - a^2} = \sqrt{3}a \text{ or } a\sqrt{3}$ Area ($\triangle ABC$) = $\frac{1}{2} \times BC \times AD$ (ii) $=\frac{1}{2} \times 2a \times a\sqrt{3}$

In a $\triangle ABC$, AB = BC = CA = 2a and $AD \perp BC$. Prove that

Ex.2 BL and Cm are medians of \triangle ABC right angled at A. Prove that $4(BL^2 + CM^2) = 5 BC^2$ [CBSE-2006]

 $=a^2\sqrt{3}$

MATHS

[A line joining mid-points of two sides is parallel to third side and is equal to half of it, ML = BC/2]

 $= BC^{2} + 4BC^{2} = 5BC^{2}$

Hence proved.

Ex.3 In the given figure, BC \perp AB, AE \perp AB and DE \perp AC. Prove that DE.BC = AD.AB.

Sol. In \triangle ABC and \triangle EDA,We have

 $\angle ABC = \triangle ADE$ [Each equal to 90⁰]

 $\angle ACB = \angle EAD$ [Alternate angles]

By AA Similarity

 $\Delta ABC \sim \Delta EDA$

$$\Rightarrow \quad \frac{BC}{AB} \frac{AD}{DE}$$

 $\Rightarrow DE.BC = AD.AB.$ Hence Proved.

Ex.4 O is any point inside a rectangle ABCD (shown in the figure). Prove that

$$OB^2 + OD^2 = OA^2 + OC^2$$
 [CBSE - 2006]

Now, PQ||BC

Therefore, PQ \perp AB and PQ \perp DC [\angle B = 90⁰ and \angle C = 90⁰]

So,
$$\angle$$
 BPQ = 90⁰ and \angle CQP = 90⁰

Therefore, BPQC and APQD are both rectangles.

Now, from Δ OPB,

 $OB^2 = BP^2 + OP^2$ (i)

Similarly, from Δ ODQ,

 $0D^2 = 0Q^2 + DQ^2$ (ii)

From Δ OQC, we have

$$0C^2 = 0Q^2 + CQ^2 \qquad \dots (iii)$$

And form Δ OAP, we have

$$OA^2 = AP^2 + OP^2 \qquad \dots (iv)$$

Adding (i) and (ii)

$$OB^2 + OD^2 = BP^2 + OP^2 + OQ^2 + DQ^2$$

$$= CQ^2 + OP^2 + OQ^2 + AP^2$$

[As BP = CQ and DQ = AP]

 $= CQ^2 + OQ^2 + OP^2 + AP^2$

 $= 0C^2 + 0A^2$ [From (iii) and (iv)]

Hence Proved.