Real Numbers

INTRODUCTION OF NUMBER SYSTEM

INTRODUCTION :

Natural numbers :

The counting numbers 1,2,3.... are called natural numbers. It is denoted by N.

 $N = \{1, 2, 3, \dots, N\}$

Whole numbers :

In the set of natural number if we include the number 0, the resulting set is known as the set of whole numbers. It is represented by W.

 $W = \{0, 1, 2, \dots\}$

Integers :

Natural numbers along with 0 and their negatives are called integers and the set of integers

is denoted by I

I = {......4, -3, -2, -1, 0, 1,2,3......}

Rational numbers :

A rational number is a number which can be expressed in the form of p/q, where p and q are integers and q is not zero.

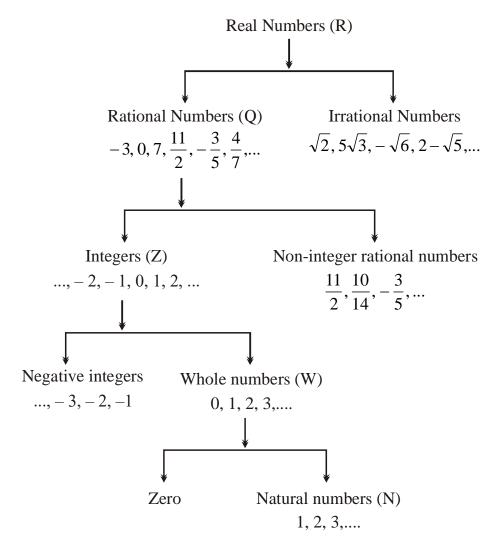
MATHS

Irrational numbers :

A number is called irrational if it can not be written in the form of p/q, where p and q are integers and q $^1\,0$

The system R of real numbers includes rational as well irrational numbers.

In this chapter we will begin with a brief recall of divisibility of integers as well state some important properties of integers.



RATIONAL NUMBERS

Decimal Representation of Rational Numbers :

i) Finite or Terminating Decimal :

Every fraction p/q can be expressed as a decimal, if the decimal expression of p/q terminates, i.e. comes to an end, then the decimal so obtained is called a terminating decimal.

e.g, 1/4 = 0.25, 5/8 = 0.625, $2\frac{3}{5} = \frac{13}{5} = 2.6$

Thus, each of the numbers $\frac{1}{4}$, $\frac{5}{8}$ and $2\frac{3}{5}$ can be expressed in the form of a terminating decimal.

Important : A fraction p/q is a terminating decimal only, when prime factors of q are 2 and

5 only.

e.g. Each one of the fractions $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{20}$, $\frac{13}{25}$ is a terminating decimal, since the

denominator of each has no prime factor other than 2 and 5.

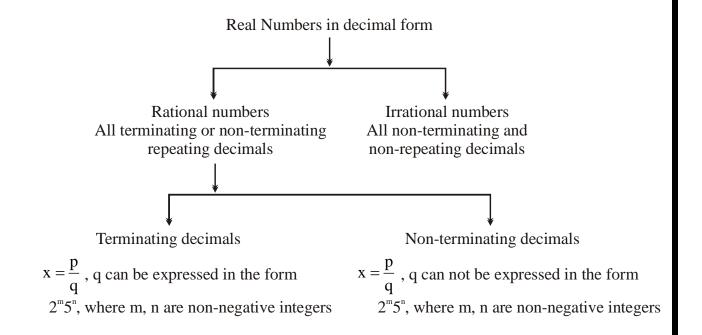
(ii) Repeating (or Recurring) Decimals:

A decimal in which a digit or a set of digits repeats periodically, is called a repeating or a recurring decimal.

In a recurring decimal, we place a bar over the first block of the repeating part and omit the other repeating blocks.

e.g. (i)
$$\frac{2}{3} = 0.666 \dots = 0.\overline{6}$$

(ii) $\frac{15}{7} = 2.142857142857 \dots = 2.\overline{142857}$



Special Characteristics of Rational Numbers :

- Every rational number is expressible either as a terminating decimal or as a repeating decimal.
- (ii) Every terminating decimal is a rational number.
- (iii) Every repeating decimal is a rational number.

Prime numbers :

All natural numbers that have one and itself only as their factors are called prime numbers

i.e. prime numbers are exactly divisible by 1 and themselves.

Example : 2, 3, 5, 7, 11, 13, 17, 19, 23etc.

Twin Primes :

The term twin primes is used for a pair of odd prime numbers that differ by two.

Example : 3 and 5 are twin primes.

Co-prime numbers :

If the H.C.F. of the given numbers (not necessarily prime) is 1 then they are known as coprime numbers.

Example : 5, 6, are co-prime as H.C.F. of (5, 6) = 1.

Note : (i) 1 is neither prime nor composite number.

- (ii) 2 is the only prime number which is even.
- (iii) Any two consecutive numbers will always be co-prime.

Composite numbers :

All natural numbers that have more than two different factors are called

composite numbers. If C is the set of composite numbers then $C = \{4, 6, 8, 9, 10, 12, \dots\}$.

Perfect Number :

If the sum of all factors of a number is twice the number then this number is called perfect number.

If $2^{k} - 1 =$ Prime number, then $(2^{k} - 1)(2^{k} - 1)$ is a perfect number.

Example : 6, 28, etc.

Imaginary Numbers:

All the numbers whose square is negative are called imaginary numbers.

Example : 2i, – 7i, i, where $i=\sqrt{-1}\;(i^2\;=-\;1)$.

Complex Numbers :

The combined form of real and imaginary numbers is known as complex numbers. It is denoted by Z = a + ib where a is real part and b is imaginary part of Z and a, b \hat{I} R. The set of complex numbers is the super set of all the sets of numbers.

Ex. 1: Express $\frac{2157}{625}$ in the decimal form.

Sol. We have,

$$\begin{array}{r}
625\overline{\smash{\big)}2157.0000}(3.4512) \\
\underline{1875} \\
2820 \\
\underline{2500} \\
3200 \\
3125 \\
750 \\
\underline{625} \\
1250 \\
1250 \\
0
\end{array}$$

$$\therefore \frac{2157}{625} = 3.4512$$
 Ans.

Ex. 2: Find the decimal representation of $\frac{-16}{45}$.

Sol. By long division, we have

MATHS

45)160 (0.3555			
135			
250			
225			
250			
225			
250			
225			
25			
$\therefore \frac{16}{45} = 0.355 \dots = 0.3\overline{5}$			
Hence, $\frac{-16}{45} = -0.35$. Ans.			

Conversion of Decimal Numbers into Rational Numbers of the form p/q:

(i) Procedure for terminating decimal :

Step. 1: Count the number of numerals to the right of the decimal point. Let it be m.

Step. 2: Drop the decimal point and in the denominator write 1 followed by m zeros.

Step. 3: Simplify the fraction.

Ex. 3: Convert 6.225 to the form p/q.

Sol. 1. Number of numerals to the right of decimal is 3 i.e. m = 3.

2. Write
$$6.225 = \frac{6225}{1000}$$

3. Simplify (divide the numerator and denominator by 25) = $6.225 = \frac{249}{40}$

(ii) Conversion of Pure Recurring Decimal to the form p/q.

- **Step.1**: Obtain the repeating decimal and put it equal to x.
- **Step 2 :** Write the number in decimal form by removing bar from the top of repeating digits and listing repeating digits at least twice :

e.g. write x = 0.888 = 0.888

Step 3: Determine the no. of digits having bar on their heads.

- **Step 4 :** If the repeating decimal has 1 place repetition, multiply by 10, a two place repetition, multiply by 100, a three place repetition, multiply by 1000 and so on.
- **Step 5**: Subtract the number in step II from the numbers obtained in step IV.
- **Step 6 :** Divide both sides of the equation by the coefficient of x.

Step 7: Write the rational number in its simplest form.

Ex. 4: Express 0.585 in the form p/q.

Sol. Let x = 0.585

x = 0.585585585(i)

Here, we have 3 repeating digits after the decimal point. So, we multiply both sides

of (i) by $10^3 = 1000$ to get

1000 x = 585.585585(ii)

Subtracting (i) from (ii), we get

 $1000 \text{ x} - \text{x} = (585.585585 \dots) - (0.585585\dots)$

 $999 x = 585 \qquad \Rightarrow \qquad x = \frac{585}{999}$

(iii) Conversion of a Mixed Recurring Decimal to the form p/q.

- **Step 1**: Obtain the mixed recurring decimal and write it equal to x.
- **Step 2 :** Determine the number of digits after the decimal point which do not have bar on them. Let there be n digits without bar just after the decimal point.
- **Step 3**: Multiply both sides of x by 10ⁿ, so that only the repeating decimal is on the right side of the decimal point.

Step 4: Use the method of converting pure recurring decimal to the form p/q and obtain the value of x.

- **Ex. 5:** Express $0.22\overline{5}$ in the form p/q.
- **Sol.** Let x = 0.225(i)

The no of digits after the decimal point which do not have bar on them is 2.

Multiply both sides of x by 10^2 .

$$100 \text{ x} = 22.5$$
(ii)

Here, we have 1 repeating digit after the decimal point. So, multiply both sides of (ii)

by 10 to get.

1000 x = 225.55(iii) Subtracting (ii) from (iii)

1000 x - 100 x = (225.55.....) - (22.55.....)

900 x = 203
$$\Rightarrow$$
 x = $\frac{203}{900}$.

IRRATIONAL NUMBERS :

A number is an irrational number, if it has a non terminating and non-repeating decimal representations. A number that cannot be put in the form p/q where p, q are integers and $q^{1}0$ is called irrational number.

e.g.
$$\sqrt{2}, \sqrt{3}, \sqrt{11}$$
 p etc.

Ex. 6 : Prove that $\sqrt{5}$ is an irrational number.

Sol. Let us assume on the contrary that $\sqrt{5}$ is a rational number. Then, there exist co-prime positive integers a and b such that

$=\sqrt{5}$	$\Rightarrow 5b^2 = a^2$	
\Rightarrow	5 a ²	[Q 5 5b ²]
\Rightarrow	5 a	(i)
\Rightarrow	a = 5c for some positive integer c	
\Rightarrow	$a^2 = 25c^2$	
⇒	$5b^2 = 25c^2$	$[Q a^2 = 5c^2]$
⇒	$b^2 = 5c^2$	
\Rightarrow	5 b ²	[Q 5 5c ²]
\Rightarrow	5 b	(ii)

From (i) and (ii), we find that a and b have at least 5 as a common factor. This contradicts the fact that a and b are co-prime.

Hence, $\sqrt{5}$ is an irrational number.

- **Ex 7:** Prove that $\sqrt{3} \sqrt{2}$ is an irrational number.
- **Sol.** If possible, let be a rational number equal to x.

Then,
$$x = \sqrt{3} - \sqrt{2}$$

 $\Rightarrow x^2 = (\sqrt{3} - \sqrt{2})^2$
 $\Rightarrow x^2 = 3 + 2 - 2\sqrt{3}\sqrt{2}$
 $\Rightarrow x^2 = 5 - 2\sqrt{6}$
 $\Rightarrow x^2 - 5 = -2\sqrt{6}$
 $\Rightarrow \frac{5 - x^2}{2} = \sqrt{6}$

Now, x is rational

$$\Rightarrow$$
 x² is rational

$$\Rightarrow \frac{5-x^2}{2}$$
 is rational

 $\Rightarrow \sqrt{6}$ is rational.

But, $\sqrt{6}$ is irrational.

Thus, we arrive at a contradiction. So, our supposition that $\sqrt{3}-\sqrt{2}$ is rational, is wrong.

Hence, $\sqrt{3} - \sqrt{2}$ is an irrational number. **Ans.**

Some Properties of irrational numbers :

- (a) The -ve of an irrational number is an irrational number.
- (b) The sum of a rational and an irrational number is an irrational number.
- (c) The product of a non-zero rational number with an irrational number is always an irrational number.

REAL NUMBERS :

The collection of real numbers consists of all the rational and irrational numbers and is denoted by R.

Every real number corresponds to a point on the line and conversely, every point on the number line represents a real number.

Ex.8 Insert a rational and an irrational number between 2 and 3.

Sol. If a and b are two positive rational numbers such that ab is not a perfect square of a rational number, then \sqrt{ab} is an irrational number lying between a and b. Also, if a,b are rational numbers, then $\frac{a+b}{2}$ is a rational number between them.

 \therefore A rational number between 2 and 3 is

$$\frac{2+3}{2} = 2.5$$

An irrational number between 2 and 3 is

 $\sqrt{2\times3} = \sqrt{6}$

- **Ex.9** Find two irrational numbers between 2 and 2.5.
- **Sol.** If a and b are two distinct positive rational numbers such that ab is not a perfect square of a rational number, then \sqrt{ab} is an irrational number lying between a and b.

 \therefore Irrational number between 2 and 2.5 is

 $\sqrt{2 \times 2.5} = \sqrt{5}$

Similarly, irrational number between 2 and $\sqrt{5}$ is $\sqrt{2 \times \sqrt{5}}$

So, required numbers are $\sqrt{5}$ and $\sqrt{2\times\sqrt{5}}$.

- **Ex.3** Find two irrational numbers lying between $\sqrt{2}$ and $\sqrt{3}$.
- **Sol.** We know that, if a and b are two distinct positive irrational numbers, then \sqrt{ab} is an irrational number lying between a and b.

: Irrational number between $\sqrt{2}$ and $\sqrt{3}$ is $\sqrt{\sqrt{2}\times\sqrt{3}} = \sqrt{\sqrt{6}} = 6^{1/4}$

Irrational number between $\sqrt{2}$ and $6^{1/4}$ is $\sqrt{\sqrt{2} \times 6^{1/4}} = 2^{1/4} \times 6^{1/8}$.

Hence required irrational number are 6^{1/4} and

 $2^{1/4} \times 6^{1/8}$.

Ex.5 Prove that

(i) $\sqrt{2}$ is irrational number

(ii) $\sqrt{3}$ is irrational number

Similarly $\sqrt{5}$, $\sqrt{7}$, $\sqrt{11}$ are irrational numbers.

Sol. (i) Let us assume, to the contrary, that $\sqrt{2}$ is rational.

So, we can find integers r and s ($\neq 0$) such that $\sqrt{2} = \frac{r}{s}$.

Suppose r and s not having a common factor other than 1. Then, we divide by the

common factor to get $\sqrt{2} = \frac{a}{b}$, where a and b are coprime.

So, $b\sqrt{2} = a$.

Squaring on both sides and rearranging, we get $2b^2 = a^2$. Therefore, 2 divides a^2 . Now, by Theorem it following that 2 divides a.

So, we can write a = 2c for some integer c.

Substituting for a, we get $2b^2 = 4c^2$, that is,

 $b^2 = 2c^2$.

This means that 2 divides b^2 , and so 2 divides b (again using Theorem with p = 2). Therefore, a and b have at least 2 as a common factor.

But this contradicts the fact that a and b have no common factors other than 1.

This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.

So, we conclude that $\sqrt{2}$ is irrational

(ii) Let us assume, to contrary, that $\sqrt{3}$ is rational. That is, we can find integers a and b ($\neq 0$) such that $\sqrt{3} = \frac{a}{b}$.

Suppose a and b not having a common factor other than 1, then we can divide by the common factor, and assume that a and b are coprime.

So, $b\sqrt{3}=a$.

Squaring on both sides, and rearranging, we get $3b^2 = a^2$.

Therefore, a² is divisible by 3, and by Theorem, it follows that a is also divisible by 3.

So, we can write a = 3c for some integer c.

Substituting for a, we get $3b^2 = 9c^2$, that is, $b^2 = 3c^2$.

This means that b^2 is divisible by 3, and so b is also divisible by 3 (using Theorem with

Therefore, a and b have at least 3 as a common factor.

But this contradicts the fact that a and b are coprime.

This contradicts the fact that a and b are coprime.

This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational.

So, we conclude that $\sqrt{3}$ is irrational

Ex.6 Prove that $7-\sqrt{3}$ is irrational

Sol. Let $7-\sqrt{3}$ is rational number

$$\therefore 7 - \sqrt{3} = \frac{p}{q} \quad (p, q \text{ are integers}, q \neq 0)$$
$$\therefore 7 - \frac{p}{q} = \sqrt{3}$$

$$\Rightarrow \sqrt{3} = \frac{7q-p}{q}$$

Here p, q are integers

$$\therefore \ \frac{7q-p}{q} \text{ is also integer}$$

- \therefore LHS = $\sqrt{3}$ is also integer but this is contradiction that $\sqrt{3}$ is irrational so our assumption is wrong that $(7-\sqrt{3})$ is rational
- \therefore 7– $\sqrt{3}$ is irrational proved.