
## TRIANGLES

## AREA OF TWO SIMILAR TRIANGLE

## EXERCISE

- **Q.1** In a trapezium ABCD, O is the point of intersection of AC and BD, AB || CD and  $AB = 2 \times CD$ . If the area of  $\triangle AOB = 84 \text{ cm}^2$ . Find the area of  $\triangle COD$ .
- **Q.2** Prove that the area of the triangle BCE described on one side BC of a square ABCD as base is one half the area of the similar triangle ACF described on the diagonal AC as base.
- **Q.3** D, E, F are the mid-point of the sides BC, CA and AB respectively of a  $\triangle$ ABC. Determine the ratio of the areas of  $\triangle$ DEF and  $\triangle$ ABC.
- **Q.4** D and E are points on the sides AB and AC respectively of a  $\triangle$ ABC such that DE || BC and divides  $\triangle$ ABC into two parts, equal in area. Find  $\frac{BD}{AB}$ .
- Q.5 Two isosceles triangles have equal vertical angles and their areas are in the ratio 16 : 25. Find the ratio of their corresponding heights.
- **Q.6** In the given figure, DE || BC and DE : BC = 3 : 5. Calculate the ratio of the areas of  $\triangle$ ADE and the trapezium BCED.



## **ANSWER KEY**

1.  $\triangle COD = 21 \text{cm}^2$ 

- **3.** Area ( $\Delta$ DEF) : Area ( $\Delta$ ABC) = 1 : 4.
- $4. \qquad \frac{BD}{AB} = \frac{2-\sqrt{2}}{2}$
- **5.** AL : DM = 4 : 5
- 6.  $\frac{ar(\Delta ADE}{ar(trapBCED)} = \frac{9}{16}$