Lines and Angle

Introduction

Line: A straight path that goes on forever in opposite directions.

Line Segments: A line segment is a Part of a line with two endpoints.

Ray: A ray is a part of a line that has one endpoint and goes on forever in only one direction.

Related Angles

Complementary Angles

If the sum of measures of angle is 90°, then the two angles said to be complementary to each other or a pair of complementary angles.

Supplementary Angles

If the sum of measures of angle is 180°, then the two angles said to be supplementary to each other or a pair of supplement angles.

Adjacent Angles

Angles that share a common side, have the same vertex, and do not overlap.

Conditions for adjacent angles are:

- (i) They have a common vertex
- (ii) They have a common arm
- (iii) The non-common arms are on either side of the common arm.

Linear Pair

A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.

Vertically Opposite Angles

A pair of non-adjacent angles formed by the intersection of two straight lines is known as the pair of vertically opposite angle.

 \angle JKL = \angle MKN and \angle JKM = \angle LKN are pairs of vertical angles

Pairs of Lines

Intersecting Lines

Lines that have one and only one point in common are known as intersecting lines.

Intersecting Lines

Transversal

A line that intersects two or more lines at **distinct** points is called a **transversal**.

Angles Made By a Transversal

From these figure, you can see lines I and m cut by transversal p. The eight angles marked 1 to 8 have their special names:

Interior angles	$\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$
Exterior angles	$\angle 1 \angle 2 \angle 7 \angle 8$
Pairs of corresponding angles	\angle 1 and \angle 5, \angle 2 and \angle 6, \angle 3 and \angle 7, \angle 4 and \angle 8
Pairs of Alternate interior angles	$\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$
Pairs of Alternate exterior angles	\angle 1 and \angle 8, \angle 2 and \angle 7
Pair of interior angles on the same side of the transversal	\angle 3 and \angle 5, \angle 4 and \angle 6

Transversal of Parallel Lines

- If two parallel lines are cut by a transversal each pair of corresponding angles are equal in measure.
- If two parallel lines are cut by a transversal each pair of alternate interior angles are equal.
- If two parallel lines are cut by a transversal, then each pair of interior angles on the same side of the transversal are supplementary.

Checking For Parallel Lines

When a transversal cuts two lines, such that pairs of corresponding angles are equal, then the lines have to be parallel.

When a transversal cuts two lines, such that pairs of alternate interior angles are equal, the lines have to be parallel.

When a transversal cuts two lines, such that pairs of interior angles on the same side of the transversal are supplementary, the lines have to be parallel.

