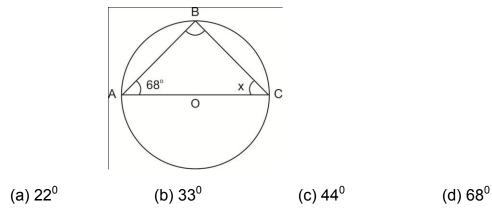
Class : IX Subject: Maths (unsolved sample paper) Summative Assessment -II

Time: 3 hours


MM: 90 Marks

General Instructions:

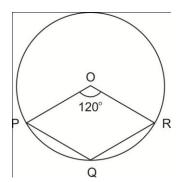
- (i) All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into 4 sections. A, B, C and
 D. Section A comprises of 8 questions of 1 mark each. Section B comprises of
 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks
 each and Section D comprises of 10 questions of 4 marks each.
- (iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
- (iv) There is no overall choice. However, internal choice has been provided in 1 question of two marks. 3 questions of three marks each and 2 questions of four marks each. You have to attempt only of the alternatives in all such questions.
- (v) Use of calculator is not permitted.

Section - A

Q.1 The value of *x* in the given figure is

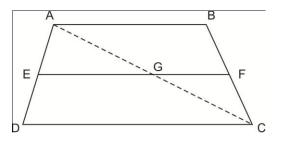


Q.2	Three angle of a	a quadrilateral is 6	0^{0} , 110^{0} and 86^{0} .	The fourth angle of
	quadrilateral is			
	(a) 104 ⁰	(b)124 ⁰	(c)94 ⁰	(d) 84 ⁰
Q.3	Class mark of class interval 90-110 is			
	(a) 90	(b) 110	(c) 100	(d) None
Q.4	A die is thrown once. The probability of getting an even no. is			
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{5}$	(d) 2
Q.5	Which one is solution of $eq^n x - 3y = 2$			
	(a) (4,1)	(b) (6,2)	(c) (5,1)	(d) (0,2)
Q.6	If the lateral surface area of cube is 1600cm ² then its edge is			
	(a) 15cm	(b) 18cm	(c) 25cm	(d) 20cm
Q.7	If the slant height of a cone is 10 cm and its radius is 6cm, then height of cone is			
	(a) 9cm	(b) 13cm	(c) 16cm	(d) 8cm
Q.8	If (2,-3) is solution of eq ⁿ $3x - ky = 2$ then the value of K is			
	(a) -2	(b) $-\frac{2}{3}$	(c) -4	(d) $-\frac{4}{3}$


Section - B

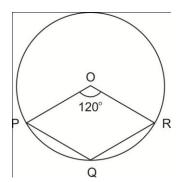
- Q.9 If the total surface area of a hemisphere is $27\pi \ cm^2$, then its diameter is equal to
- Q.10 In the given parallelogram the value of x will be

Q.11 In the given figure, if $\angle POR$ is 120° , then the value of $\angle PQR$ is


- Q.12 The arithmetic mean of first five odd natural no. is
- Q.13 The probability of an event lies between.....,
- Q.14 Write the relation between mean, median and mode......

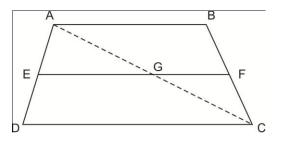
Section - C

- Q.15 Draw the graph of 2x + y = 6 and find the point on x-axis where graph of this eqⁿ cut the x-axis.
- Q.16 Find three solution of the linear equation 2x + 3y = 5, and check whether (-3, 4) is a solution of the given equation.
- Q.17 In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angle.


OR

In the given figure, E is the mid-point of side AD of a trapezium ABCD with AB||CD. A line through E parallel to AB meets BC in F show that F is the mid-point of BC.

Q.11 In the given figure, if $\angle POR$ is 120° , then the value of $\angle PQR$ is


- Q.12 The arithmetic mean of first five odd natural no. is
- Q.13 The probability of an event lies between.....,
- Q.14 Write the relation between mean, median and mode......

Section - C

- Q.15 Draw the graph of 2x + y = 6 and find the point on x-axis where graph of this eqⁿ cut the x-axis.
- Q.16 Find three solution of the linear equation 2x + 3y = 5, and check whether (-3, 4) is a solution of the given equation.
- Q.17 In a parallelogram, show that the angle bisectors of two adjacent angles intersect at right angle.

OR

In the given figure, E is the mid-point of side AD of a trapezium ABCD with AB||CD. A line through E parallel to AB meets BC in F show that F is the mid-point of BC.

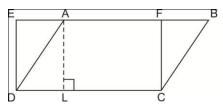
9.00	60
11.00	80
13.00	70
15.00	65
17.00	75
19.00	60
21.00	50

Draw a velocity time graph for the above data.

Q.24 A coin is tossed 15 times and observed that 11 times head comes up. Find the probability that a tail comes up.

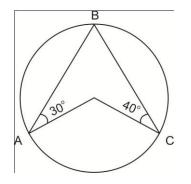
Section - D

- Q.25 The taxi fare in a city is as follow. For the first kilometer, the fare is Rs. 8 for the subsequent distance it is Rs. 5 per km. Taking the distance covered as x km. and total fare as Rs. y, write a linear equations for this information and draw its graph.
- Q.26 If the points A (3,5) and B(1,4) lies on the line ax + by = 7 find the values of a and b.


OR

Draw the graph of the equation -y = 1 and 2x + y = 8. Shade the area bounded by these two lines and y-axis. Also determine this area.

- Q.27 ABCD is a parallelogram. AB produced to E so that BE=AB. Prove that ED bisects BC.
- Q.28 In given figure, ABCD is a parallelogram and EFCD is a rectangle. Also $AL \perp DC$ Prove that


(i) ar(ABCD) = ar(EFCD)

(ii) ar(ABCD) = DCXAL

- Q.29 Prove that the area of an equilateral triangle is equal to $\frac{\sqrt{3}}{4}a^2$ where a is the side of the triangle.
- Q.30 In given figure, calculate the angle $\angle AOC$

- Q.31 Construct a $\triangle ABC$ in which BC=5.6cm, AC-AB=1.6cm and $\angle B = 45^{\circ}$
- Q.32 The mean of the following distribution is 50.

X	frequency
10	17
30	5a+3
50	32
70	7a-11
90	19

Find the value of a and frequency of 30 and 70.

- Q.33 How many planks each of which is 2m long, 2.5 cm broad and 4cm thick can be cut off from a wooden block 6m long, 15cm broad and 40cm thick?
- Q.34 An iron pipe 20cm long has exterior diameter equal to 25cm. If the thickness of the pipe is 1 cm. Find the whole surface area of the pipe excluding ends of the pipe.

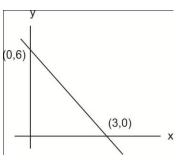
OR

The diameter of a sphere is decreased by 25% by what percent its curved surface area decreases.

Sample Paper SA -II

Marking Scheme

Section - A


- Q.1 (a)
- Q.2 (a)
- Q.3 (c)
- Q.4 (a)
- Q.5 (c)
- Q.6 (d)
- Q.7 (d)
- Q.8 (d)

Section - B

- Q.9 6cm
- Q.10 36cm
- Q.11 120⁰
- Q.12 5
- Q.13 0 and 1, both no. are including.
- Q.14 mode = 3 median 2 mean

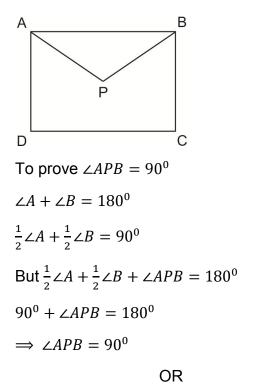
Section - C

Q.15

Point on x-axis is (3,0)

Q.16 2x + 3y = 5 -----(1)

Put x = 1, 2, 3, 0, -1, 2 etc and get value of y.


then (x, y) is solⁿ of this eq^n

Put x = -3 and y = 4 in eq^n (1) we get

 $-6+12 \neq 4$

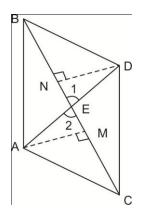
So (-3, 4) is not a solution.

Construction : Join AC to intersect EF at G.

Proof EF||DE

EG || DE

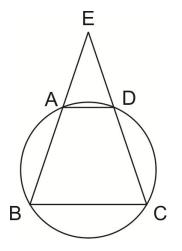
since E is mid point of AD.


: G is mid point of AC (By converse of mid point theorem)

In $\triangle ABC FG ||AB$.

G is mid point of AC

 \therefore F is mid point of BC.


Construction : Join AD. Which intersect BC at E draw $DN \perp BC$ $AM \perp BC$ Proof :

AM=DN (Δ on same base and equal in area so altitude is same)

Now in $\triangle AEM$ and DEN

$$\angle 1 = \angle 2$$

 $\angle AME = \angle DNE = 90^{\circ}$
 $AM = DN$
 $\triangle AEM \cong \triangle DEN$
So $AE = DE$
BC bisect AD

Q.19

Given ABCD is a cyclic quadrilateral BA and CD produced meet at E.

To prove $\triangle EBC$ and $\triangle EDA$ are equiangular.

Proof : ABCD is a cyclic quad.

 $\therefore \ \angle BAD + \angle BCD = 180^{\circ}$

But $\angle BAD + \angle EAD = 180^{\circ}$ (linear pair)

$$\implies \angle BCD = \angle EAD$$

Similarly $\angle ABC = \angle EDA$

and $\angle BEC = \angle AED$

Hence Δs EBC and EDA are equiangular

OR

 $\angle BCD + \angle BAD = 180^{\circ}$ (as ABCD is a cyclic quadrilateral)

 $\angle BCD + 70^0 = 180^0$

 $\angle BCD = 110^{\circ}$ -----(1)

Also $\angle CBD + \angle BCD + \angle BDC = 180^{\circ}$

 $30^{0} + 110^{0} + \angle BDG = 180^{0}$

 $\angle BDC = 40^{\circ}$ Ans.

Since $\angle ADB$ is angle in semi-circle

 $\angle ADB = 90^{\circ}$

 $\ln \Delta ABD$

 $\angle ABD + \angle ADB + BAD = 180^{\circ}$ $\angle ABD + 90^{\circ} + 70^{\circ} = 180^{\circ}$ $\angle ABD = 20^{\circ} \text{ Ans}$

Q.20 Steps of construction

(i) Draw a ray BX and cut off a line segment BC=4.5cm from it

(ii) Construct $\angle XBY = 45^{\circ}$

(iii) Cut off a line segment BD=2.5cm from BY

(iv) Join CD.

(v) Draw \perp bisector of CD cutting BY at a point A.

(vi) Join AC

So $\triangle ABC$ is the required triangle.

Q.21 $l^2 = r^2 + h^2$

l = 26m

Curved surface area = πrl

 $Cost = 70 X \pi rl$

= Rs. 137280

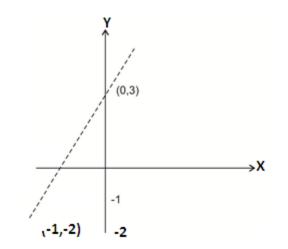
Q.22 Let r is radius then height of cone = sphere = cylinder = 2r

So S_1 = curved surface of sphere = $4\pi r^2$

 S_2 = curved surface of cylinder = $4\pi r^2$

S₃ = curved surface cone =
$$\sqrt{5} \pi r^2$$

as $l = \sqrt{r^2 + h^2} = \sqrt{r^2 + 4r^2} = \sqrt{5} r$ ratio : 4 : 4 : $\sqrt{5}$

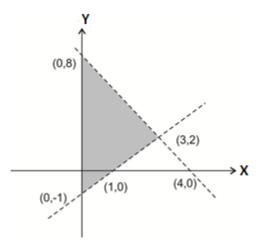

OR volume $S^3 = 5832m^3$ S = 18mPainted area $6s^2$ $= 1944m^2$ Cost = 1944 X 3.5 = Rs. 6804

Q.23 Check your graph with the help of your teacher/classmates

Q.24 Ans.
$$\frac{4}{15}$$

Q.25 $y = 8 + 5 \times (x - 1)$

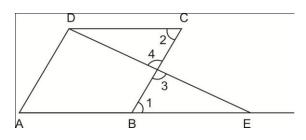
 $\Rightarrow y = 5x + 3$



Q.26
$$3a + 5b = 7$$

$$a + 4b = 7$$
$$a = -1, b =$$

OR


2

Area =
$$\frac{1}{2} \times 9 \times 3 = 13.5 \, sq \, units.$$

Q.27

AB||CD and BC transversal

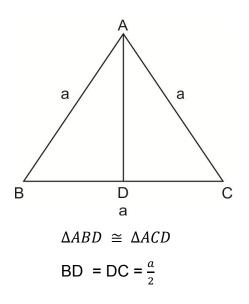
So $\angle 1 = \angle 2$ $\angle 3 = \angle 4$

$$AB = CD = BE$$

So $\triangle BOE \cong \triangle COD$

 \implies B0 = C0, O is mid of BC

 \Rightarrow ED bisect BC


Q.28 Since parallelogram and rectangle are on same base DC and between same height AL

ar (ABCD) = ar(DEFE)

So ar (ABCD) = CD X FC

= CD X AL (AL = FC as ALCF is rectangle)

 $\ln \Delta ADB$

$$AD^{2} = a^{2} = \frac{a^{2}}{4}$$
$$AD = \frac{\sqrt{3}}{4} a$$
$$ar \ \Delta ABC = \frac{1}{2}BC \times AD = \frac{\sqrt{3}}{4}a^{2}$$

Q.30 Join OB

the find $\angle ABO = 30^{\circ}$ and $\angle CBO = 40^{\circ}$ So $\angle ABC = 70^{\circ}$ So $\angle AOC = 140^{\circ}$

Q.31 Steps of const.

(i) Draw BC=5.6cm

(ii) At B make $\angle CBX = 45^{\circ}$

(iii) Produce XB to X¹ to form line XBX¹

- (iv) From ray BX^1 cut off line segment BD = 1.6cm
- (v) Join CD

(vi) Draw \perp bisector of CD which cut BX at A.

(vii) Join AC to obtain required ΔBAC

Q.32 $\Sigma fi = 12a + 60$, $\Sigma fixi = 640a + 2800$ $\bar{x} = \frac{\Sigma fixi}{\Sigma fi}$ $50 = \frac{640a + 2800}{12a + 60}$ a = 5 Ans. Q.33 number of planks = $\frac{volume \ of \ wooden \ block}{volume \ of \ each \ plank} = \frac{600 \times 15 \times 40}{200 \times 2.5 \times 4} = 180$ Q.34 R = 12.5 (External radius) r = internal radius = (external radius - 1cm) = 11.5cm h = 20cm Total surface area = External surface area + Internal surface area = 3168cm² OR

