
Introduction

Chemistry often involves the measurement of properties which are the aggregate
of many fundamental processes. A variety of techniques have been developed for
extracting information about these underlying processes. Fourier analysis is one
of the most important and is very widely used - eg: in crystallography, X-ray
adsorbtion spectroscopy, NMR, vibrational spectroscopy (FTIR) etc.. As it involves
decomposition of functions into partial waves it also appears in many quantum
mechanical calculations.

A Little Trigonometry

You will need to be able to manipulate sin() and cos() in order to understand
Fourier analysis - a good understanding of the UK's A-level Pure Maths syllabus is
su�cient. Here is a brief reminder of some important properties.

Units angles are typically measured in radians: 0 − 360ois equivalent to 0 − 2π
radians

Cos and sin curves look like this:
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Both sin(x) and cos(x) are periodic on the interval 2π and integrate to 0 over a full
period, ie: ∫ +π

−π

cos (x) dx =
∫ +π

−π

sin (x) dx = 0

Wavelength

It should be clear that sin(2x) repeats on the interval 0 → π and sin(3x) on the
interval 0 → 2π/3 etc. In general sin(nx) and cos(nx) repeat on the interval 0 →
2π/n. The repeat distance is the wavelength λ and so in general, λ = 2π/n.

The discrete family of functions sin(nx), cos(nx) are all said to be commensurate
with the period 2π- that is, they all have wavelengths which divide exactly into 2π.

The function sin(kx) for some real number k has an arbitrary wavelength λ = 2π/k.

k is usually referred to as the wavevector.

Note: A simple Mathermatica notebook, trig_1.nb, is provided with the course
and can be used to play with sin and cos functions.

Fourier Series

The idea of a Fourier series is that any (reasonable) function, f(x), that is peri-
odic on the interval 2π (ie: f(x + 2πn) = f(x) for all n) can be decomposed into
contributions from sin(nx) and cos(nx).

The general Fourier series may be written as:

f(x) =
a0

2
+ a1 cos (x) + a2 cos (2x) + a3 cos (3x) + . . . + an cos (nx)

+ b1 sin (x) + b2 sin (2x) + b3 sin (3x) + . . . + bn sin (nx) (1)

Note:

1. cos (nx) and sin (nx) are periodic on the interval 2π for any integer n.

2. The anand bn coe�cients measure the strength of contribution from each
�harmonic�.

Orthogonality

The functions cos (nx) and sin (nx) can be used in this way because they satisfy the
following orthogonality conditions:
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∫ +π

−π

cos (mx) sin (nx) dx = 0 for all m, n∫ +π

−π

cos (mx) cos (nx) dx = 0 m 6= n

= 2π m = n = 0
= π (m = n) > 0∫ +π

−π

sin (mx) sin (nx) dx = 0 m 6= n

= π (m = n) > 0

Note that the integrals only need to extend from −π to +π (or any other period of
2π) as the functions simply repeat outside this range.

These conditions can be proved quite readily but it is relatively easy to see why
they are true graphically.

• cos(mx) sin(nx) ? This is obvious (!) if you plot cos(x) and sin(x).

• sin(mx) sin(nx) n 6= m? It is easier to see why it is true by picking a special
case; say the integral of sin(2x) sin(x) and plotting.

The symmetry of the plot makes it clear that an integral of this function over any
period of 2π will yield 0.

• Is it obvious that this will be true for all cases when n 6= m ?

• Also for the case cos(mx)cos(nx) ?

• Can you prove it in the general case ?

Note: A simple Mathermatica notebook, trig_1.nb, is provided with the course
and can be used to play with these products and integrals.

• cos(mx) cos(mx) - ie: the case when n = m∫ +π

−π

cos2 (mx) dx =
∫ +π

−π

1
2

(1 + 2 cos (mx)) dx =
1
2

[
x +

sin (2mx)
2m

]π

−π

= π

4



Finding the coe�cients

As was shown in the lecture the orthogonality conditions allow us to pick o� values
for all of the coe�cients. Multiplying the whole Fourier series by 1, cos (nx)or
sin (nx) and integrating over a complete period leads to terms which are zero apart
from one which corresponds to the coe�cient a0, an or bn respectively, that is:

a0 =
1
π

∫ +π

−π

f (x) dx

an =
1
π

∫ +π

−π

f (x) cos (nx) dx

bn =
1
π

∫ +π

−π

f (x) sin (nx) dx

If f(x) is �well behaved� we can perform these integrals and obtain the Fourier
decomposition of f(x).

Note: Well behaved in this context means that the function obeys the Dirichlet
conditions.

An Example

Consider the square wave:

f(x) = 1 0 ≤ x < π

= 0 −π ≤ x < 0
f(x) = f(x + 2π)

This appears to be a di�cult case - the rather angular square wave does not look
as if it will be readily expanded in terms of sine and cosine functions.

The coe�cients in the expansion can be determined from the formulae given above.

a0 is determined by:
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a0 =
1
π

∫ +π

−π

f(x)dx =
1
π

∫ +π

0

1 dx =
1
π
× π = 1

where the restriction of the integral to the region 0 → π is simply because f(x) is
zero in the region −π → 0.

Similarly:

an =
1
π

∫ +π

0

1× cos (nx) dx = 0

just draw cos (x)to see that its integral from 0→ π is zero, so

an = 0 for all n

For the b coe�cients we have,

bn =
1
π

∫ +π

0

1× sin (nx) dx

=
1
π

[
− cos(nx)

n

]π

0

=
1

nπ
(1− cos (nπ))

but,

cos (nπ) = +1 n− even

= −1 n− odd

so,

bn = 0 n− even
2

nπ n− odd

having determined all of the coe�cients we can write the series for f(x) as:

f(x) =
1
2

+
2
π

(
sin (x) +

sin (3x)
3

+
sin (5x)

5
+ . . .

)
The sum continues to an in�nite number of terms. We can see how it converges to
the square wave by plotting the truncated sum containing a �nite number of terms
- lets call the sum containing n-trigonometric terms fn(x) then f0 (x) = 1

2 is just the
average value of the square wave.

f1(x) = 1
2 + 2

π sin (x) is plotted below
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which is the �best� approximation that can be made using just a constant and a
sine wave - not great.

f2(x) = 1
2 + 2

π sin (x) + 2
3π sin(3x) looks like this:

which is beginning to look more like a square well.

The weight in each contribution is falling and with each additional term the �ne
detail of the square wave is being re�ned.

Including 50 terms, f50(x), we get
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which is a pretty decent approximation to the original square wave.

Note that the little spikes at the edge of the square wave are present even after
including many hundreds of terms (although they become �ner and �ner) they are
a consequence of trying to describe a discontinuous step function with smooth sine
waves � this was noticed and studied by the mathematician JW Gibbs in the late
1890's.

A more compact notation

In many applications you will �nd that a more compact notation is used for the
Fourier series. Using the identity

eiθ = cos (θ) + i sin (θ)

We can write;

cos (θ) =
1
2

(
eiθ + e−iθ

)

sin (θ) =
1
2i

(
eiθ − e−iθ

)
Using these relations we can rewrite the Fourier series, equation 1, in the more
compact exponential notation;

f(x) =
a0

2
+

1
2

∞∑
n=1

ai

(
einx + e−inx

)
+

1
2i

∞∑
n=1

bi

(
einx + e−inx

)
which can be rearranged as;

f(x) =
∞∑

n=−∞
cneinx
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In the exponential notation the orthogonality conditions are;

∫ +π

−π

e−imxeinxdx = 2π if m = n

and so the coe�cients given by

cn =
1
2π

∫ +π

−π

e−inxf(x)dx

The original and compact notations are equivalent and the cn coe�cients are there-
fore directly related to an and bn

c0 =
1
2
a0

cn =
1
2

(an − bn)

c−n =
1
2

(an + bn)

This more compact notation is used in almost all applications.

Fourier Transforms

Functions of arbitrary periodicity

The discussion of Fourier Series above dealt with functions periodic on the interval
2π (ie: f(x + 2πn) = f(x) for all n). This can be generalised to functions periodic
on any interval.

Functions with a periodicity of 2L (ie: f(x + 2Ln) = f(x) for all n) can be decom-
posed into contributions from from sin

(
nπx

L

)
and cos

(
nπx

L

)
which are periodic on

the period 2L.

The Fourier series may then be written as:

f(x) =
a0

2
+ a1 cos

(πx

L

)
+ a2 cos

(
2
πx

L

)
+ a3 cos

(
3
πx

L

)
+ . . . + an cos

(
n

πx

L

)
+ b1 sin

(πx

L

)
+ b2 sin

(
2
πx

L

)
+ b3 sin

(
3
πx

L

)
+ . . . + bn sin

(
n

πx

L

)
or

f(x) =
a0

2
+
∞∑

n=1

(
an cos

(
n

πx

L

)
+ bn sin

(
n

πx

L

))
or, in the exponential notation,

f(x) =
∞∑

n=−∞
cnein πx

L
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cn =
1

2L

∫ +L

−L

e−in πx
L f(x)dx

Note: The limits of integration cover a single period of the function which is not
2L rather than 2π.

This allows a function of arbitrary period to be analysed.

Nonperiodic functions

Fourier series are applicable only to periodic functions but non-periodic functions
can also be decomposed into Fourier components - this process is called a Fourier
Transform.

Imagine a function that is of a �nite extent that is much less than the periodicity,
2L, as pictured below,

If L becomes very large (tends to in�nity) then we will have an isolated, aperiodic,
function. We will use this limiting process to develop the equations for the Fourier
Transform from the Fourier Series.

Consider the Fourier Series for this function;

f(x) =
∞∑

n=−∞
cnein πx

L

Consider the limit in which L becomes very large.

If we de�ne;

kn =
nπ

L

then

f(x) =
∞∑

n=−∞
cneiknx

and it is clear that for very large L the sum contains a very large number of waves
with wavevector knand that each succesive wave di�ers from the last by a tiny
change in wavevector (or if you prefer, wavelength),

∆k = kn+1 − kn =
π

L
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As was shown in the lecture, in the limit of large L k becomes a continuous vari-
able, the discrete coe�cients, cn, become a continuous function of k, c (k)and the
summation can be replaced by an integral and,

f(x) =
1
2π

∫ +∞

−∞
c(k)eikxdk

c(k) =
∫ +∞

−∞
f(x)e−ikxdx

These pair of equations are very often rescaled by substituting c(k) =
√

2πc(k) to
obtain;

f(x) =
1√
2π

∫ +∞

−∞
c(k)eikxdk

c(k) =
1√
2π

∫ +∞

−∞
f(x)e−ikxdx

The functions f and c are called a Fourier transform pair - c is the Fourier transform
of f and f is the (inverse) transform of c.
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