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Diagonalizability

Consider A ∈ Rn×n, having n eigenvectors v1, v2, · · · , vn;
with corresponding eigenvalues λ1, λ2, · · · , λn.

AS = A[v1 v2 · · · vn] = [λ1v1 λ2v2 · · · λnvn]

= [v1 v2 · · · vn]
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λ1 0 · · · 0
0 λ2 · · · 0
...
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. . .

...
0 0 · · · λn
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

= SΛ

⇒ A = SΛS−1 and S−1AS = Λ

Diagonalization: The process of changing the basis of a linear
transformation so that its new matrix representation is diagonal,
i.e. so that it is decoupled among its coordinates.
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Diagonalizability

Diagonalizability:

A matrix having a complete set of n linearly independent
eigenvectors is diagonalizable.

Existence of a complete set of eigenvectors:

A diagonalizable matrix possesses a complete set of n
linearly independent eigenvectors.

◮ All distinct eigenvalues implies diagonalizability.

◮ But, diagonalizability does not imply distinct eigenvalues!

◮ However, a lack of diagonalizability certainly implies a
multiplicity mismatch.
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Canonical Forms

Jordan canonical form (JCF)

Diagonal (canonical) form

Triangular (canonical) form

Other convenient forms

Tridiagonal form
Hessenberg form
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Canonical Forms
Jordan canonical form (JCF): composed of Jordan blocks

J =
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The key equation AS = SJ in extended form gives

A[· · · Sr · · · ] = [· · · Sr · · · ]
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,

where Jordan block Jr is associated with the subspace of

Sr = [v w2 w3 · · · ]
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Canonical Forms
Equating blocks as ASr = SrJr gives

[Av Aw2 Aw3 · · · ] = [v w2 w3 · · · ]
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Columnwise equality leads to

Av = λv, Aw2 = v + λw2, Aw3 = w2 + λw3, · · ·

Generalized eigenvectors w2, w3 etc:

(A − λI)v = 0,

(A − λI)w2 = v and (A − λI)2w2 = 0,

(A − λI)w3 = w2 and (A − λI)3w3 = 0, · · ·
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Canonical Forms

Diagonal form

◮ Special case of Jordan form, with each Jordan block of 1× 1
size

◮ Matrix is diagonalizable

◮ Similarity transformation matrix S is composed of n linearly
independent eigenvectors as columns

◮ None of the eigenvectors admits any generalized eigenvector

◮ Equal geometric and algebraic multiplicities for every
eigenvalue
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Canonical Forms

Triangular form
Triangularization: Change of basis of a linear tranformation so as
to get its matrix in the triangular form

◮ For real eigenvalues, always possible to accomplish with
orthogonal similarity transformation

◮ Always possible to accomplish with unitary similarity
transformation, with complex arithmetic

◮ Determination of eigenvalues

Note: The case of complex eigenvalues: 2× 2 real diagonal block

[

α −β
β α

]

∼
[

α+ iβ 0
0 α− iβ

]
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Canonical Forms

Forms that can be obtained with pre-determined number of
arithmetic operations (without iteration):

Tridiagonal form: non-zero entries only in the (leading) diagonal,
sub-diagonal and super-diagonal

◮ useful for symmetric matrices

Hessenberg form: A slight generalization of a triangular matrix

Hu =
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Note: Tridiagonal and Hessenberg forms do not fall in the
category of canonical forms.
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Symmetric Matrices

A real symmetric matrix has all real eigenvalues and

is diagonalizable through an orthogonal similarity

transformation.

Eigenvalues must be real.
A complete set of eigenvectors exists.
Eigenvectors corresponding to distinct eigenvalues are

necessarily orthogonal.
Corresponding to repeated eigenvalues, orthogonal eigenvectors

are available.

In all cases of a symmetric matrix, we can form an
orthogonal matrix V, such that VTAV = Λ is a real
diagonal matrix.

Further, A = VΛVT .

Similar results for complex Hermitian matrices.
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Symmetric Matrices

Proposition: Eigenvalues of a real symmetric matrix must be real.

Take A ∈ Rn×n such that A = AT , with eigenvalue λ = h + ik.

Since λI − A is singular, so is

B = (λI − A) (λ̄I − A) = (hI − A + ikI)(hI −A − ikI)

= (hI − A)2 + k2I

For some x 6= 0, Bx = 0, and

xTBx = 0⇒ xT (hI − A)T (hI − A)x + k2xT x = 0

Thus, ‖(hI − A)x‖2 + ‖kx‖2 = 0

k = 0 and λ = h
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Symmetric Matrices

Proposition: A symmetric matrix possesses a complete set of
eigenvectors.

Consider a repeated real eigenvalue λ of A and examine its Jordan
block(s).

Suppose Av = λv.
The first generalized eigenvector w satisfies (A − λI)w = v, giving

vT (A − λI)w = vT v ⇒ vTATw − λvTw = vT v

⇒ (Av)Tw − λvTw = ‖v‖2

⇒ ‖v‖2 = 0

which is absurd.

An eigenvector will not admit a generalized eigenvector.

All Jordan blocks will be of 1× 1 size.
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Symmetric Matrices

Proposition: Eigenvectors of a symmetric matrix corresponding to
distinct eigenvalues are necessarily orthogonal.

Take two eigenpairs (λ1, v1) and (λ2, v2), with λ1 6= λ2.

vT
1 Av2 = vT

1 (λ2v2) = λ2v
T
1 v2

vT
1 Av2 = vT

1 ATv2 = (Av1)
Tv2 = (λ1v1)

T v2 = λ1v
T
1 v2

From the two expressions, (λ1 − λ2)v
T
1 v2 = 0

vT
1 v2 = 0

Proposition: Corresponding to a repeated eigenvalue of a
symmetric matrix, an appropriate number of orthogonal
eigenvectors can be selected.

If λ1 = λ2, then the entire subspace < v1, v2 > is an eigenspace.
Select any two mutually orthogonal eigenvectors for the basis.
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Symmetric Matrices

Facilities with the ‘omnipresent’ symmetric matrices:

◮ Expression

A = VΛVT

= [v1 v2 · · · vn]
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= λ1v1v
T
1 + λ2v2v

T
2 + · · ·+ λnvnv

T
n =

n
∑

i=1

λiviv
T
i

◮ Reconstruction from a sum of rank-one components
◮ Efficient storage with only large eigenvalues and corresponding

eigenvectors
◮ Deflation technique
◮ Stable and effective methods: easier to solve the eigenvalue

problem
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Similarity Transformations

Hessenberg

Symmetric Tridiagonal Triangular

Symmetric Tridiagonal

Diagonal

General

Figure: Eigenvalue problem: forms and steps

How to find suitable similarity transformations?

1. rotation

2. reflection

3. matrix decomposition or factorization

4. elementary transformation
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Points to note

◮ Generally possible reduction: Jordan canonical form

◮ Condition of diagonalizability and the diagonal form

◮ Possible with orthogonal similarity transformations: triangular
form

◮ Useful non-canonical forms: tridiagonal and Hessenberg

◮ Orthogonal diagonalization of symmetric matrices

Caution: Each step in this context to be effected through
similarity transformations

Necessary Exercises: 1,2,4


