Outline

Plane Rotations Jacobi Rotation Method Givens Rotation Method

Jacobi and Givens Rotation Methods (for symmetric matrices) Plane Rotations Jacobi Rotation Method Givens Rotation Method

Plane Rotations

Plane Rotations

Jacobi Rotation Method Givens Rotation Method

.

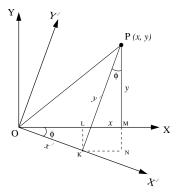


Figure: Rotation of axes and change of basis

$$x = OL + LM = OL + KN = x' \cos \phi + y' \sin \phi$$

$$y = PN - MN = PN - LK = y' \cos \phi - x' \sin \phi$$

Plane Rotations

Orthogonal change of basis:

Plane Rotations Jacobi Rotation Method Givens Rotation Method

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \Re \mathbf{r}'$$

Mapping of position vectors with

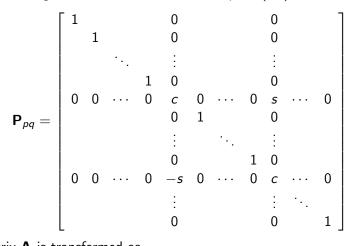
$$\Re^{-1} = \Re^{\mathcal{T}} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$

In three-dimensional (ambient) space,

$$\Re_{xy} = \begin{bmatrix} \cos\phi & \sin\phi & 0\\ -\sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}, \ \Re_{xz} = \begin{bmatrix} \cos\phi & 0 & \sin\phi\\ 0 & 1 & 0\\ -\sin\phi & 0 & \cos\phi \end{bmatrix} \text{ etc.}$$

Plane Rotations Jacobi Rotation Method Givens Rotation Method

Generalizing to *n*-dimensional Euclidean space (R^n) ,



Matrix **A** is transformed as

$$\mathbf{A}' = \mathbf{P}_{pq}^{-1} \mathbf{A} \mathbf{P}_{pq} = \mathbf{P}_{pq}^{T} \mathbf{A} \mathbf{P}_{pq},$$

only the *p*-th and *q*-th rows and columns being affected.

Jacobi and Givens Rotation Methods 97,

Jacobi Rotation Method

Plane Rotations Jacobi Rotation Method Givens Rotation Method

$$\begin{aligned} a'_{pr} &= a'_{rp} &= ca_{rp} - sa_{rq} \text{ for } p \neq r \neq q, \\ a'_{qr} &= a'_{rq} &= ca_{rq} + sa_{rp} \text{ for } p \neq r \neq q, \\ a'_{pp} &= c^2 a_{pp} + s^2 a_{qq} - 2sca_{pq}, \\ a'_{qq} &= s^2 a_{pp} + c^2 a_{qq} + 2sca_{pq}, \text{ and} \\ a'_{pq} &= a'_{qp} &= (c^2 - s^2)a_{pq} + sc(a_{pp} - a_{qq}) \end{aligned}$$

In a Jacobi rotation,

$$a'_{pq} = 0 \Rightarrow \frac{c^2 - s^2}{2sc} = \frac{a_{qq} - a_{pp}}{2a_{pq}} = k$$
 (say).

Left side is $\cot 2\phi$: solve this equation for ϕ . Jacobi rotation transformations \mathbf{P}_{12} , \mathbf{P}_{13} , \cdots , \mathbf{P}_{1n} ; \mathbf{P}_{23} , \cdots , \mathbf{P}_{2n} ; \cdots ; $\mathbf{P}_{n-1,n}$ complete a full sweep. **Note:** The resulting matrix is far from diagonal!

Jacobi and Givens Rotation Methods 98,

Jacobi Rotation Method

Sum of squares of off-diagonal terms before the transformation

$$S = \sum_{r \neq s} |a_{rs}|^2 = 2 \left[\sum_{r \neq p} a_{rp}^2 + \sum_{p \neq r \neq q} a_{rq}^2 \right]$$
$$= 2 \left[\sum_{p \neq r \neq q} (a_{rp}^2 + a_{rq}^2) + a_{pq}^2 \right]$$

and that afterwards

$$S' = 2 \left[\sum_{p \neq r \neq q} (a_{rp}'^2 + a_{rq}'^2) + a_{pq}'^2 \right]$$
$$= 2 \sum_{p \neq r \neq q} (a_{rp}^2 + a_{rq}^2)$$

differ by

$$\Delta S=S'-S=-2a_{pq}^2\leq 0; \quad ext{and} \ S
ightarrow 0.$$

Givens Rotation Method

While applying the rotation \mathbf{P}_{pq} , demand $a'_{rq} = 0$: $\tan \phi = -\frac{a_{rq}}{a_{rp}}$

r = p - 1: Givens rotation

• Once $a_{p-1,q}$ is annihilated, it is never updated again!

Sweep P_{23} , P_{24} , ..., P_{2n} ; P_{34} , ..., P_{3n} ; ...; $P_{n-1,n}$ to annihilate a_{13} , a_{14} , ..., a_{1n} ; a_{24} , ..., a_{2n} ; ...; $a_{n-2,n}$.

Symmetric tridiagonal matrix

How do eigenvectors transform through Jacobi/Givens rotation steps?

$$\stackrel{\sim}{\mathbf{A}} = \cdots \mathbf{P}^{(2)^T} \mathbf{P}^{(1)^T} \mathbf{A} \mathbf{P}^{(1)} \mathbf{P}^{(2)} \cdots$$

Product matrix $\mathbf{P}^{(1)}\mathbf{P}^{(2)}\cdots$ gives the basis.

To record it, initialize ${\bf V}$ by identity and keep multiplying new rotation matrices on the right side.

Givens Rotation Method

Jacobi and Givens Rotation Methods

100.

Plane Rotations Jacobi Rotation Method Givens Rotation Method

Contrast between Jacobi and Givens rotation methods

- What happens to intermediate zeros?
- What do we get after a complete sweep?
- How many sweeps are to be applied?
- What is the *intended* final form of the matrix?
- How is size of the matrix relevant in the choice of the method?

Fast forward ...

- Householder method accomplishes 'tridiagonalization' more efficiently than Givens rotation method.
- But, with a half-processed matrix, there come situations in which Givens rotation method turns out to be more efficient!

Points to note

Rotation transformation on symmetric matrices

- Plane rotations provide orthogonal change of basis that can be used for diagonalization of matrices.
- ► For small matrices (say 4 ≤ n ≤ 8), Jacobi rotation sweeps are competitive enough for diagonalization upto a reasonable tolerance.
- For large matrices, one sweep of Givens rotations can be applied to get a symmetric tridiagonal matrix, for efficient further processing.

Necessary Exercises: 2,3,4