
Chapter 6

Series Solution

This chapter lays emphasis on the classical theory of series solution for ODE by
using power series expansion around ordinary and singular points.
We mainly focus on Legendre, Hermite and Bessel differential equations. We
also deduce various interesting properties of Legendre and Hermite polynomials
as well as Bessel functions.

6.1 Preliminaries

A power series in powers of (t− t0) is an infinite series of the form

∞
∑

k=0

ck(t− t0)
k = c0 + c1(t− t0) + c2(t− t0)

2 + · · · (6.1.1)

where t is a variable and c0, c1, c2, · · · are constants. Recall that a series
∞
∑

k=0

ck(t− t0)
k is convergent at a point t if the limit of the partial sums sn(t) =

n
∑

k=0

ck(t− t0)
k exists. This limit f(t) is denoted as the sum of the series at the

point t. A series which does not converge is said to be a divergent series.

Example 6.1.1 Consider the geometric power series

∞
∑

k=0

tk = 1 + t + t2 + · · ·

The partial sums sn(t) = 1 + t+ · · · + tn satisfy the relation

tsn(t) = t+ t2 + · · · + tn + tn+1

and hence sn(t) =
1 − tn+1

1 − t
.

This gives f(t) = lim sn(t) =
1

1− t
for |t| < 1.
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176 CHAPTER 6. SERIES SOLUTION

Definition 6.1.1 A power series
∞
∑

k=0

ck(t− t0)
k is said to converge absolutely

at a point t if the series

∞
∑

k=0

|ck(t− t0)
k| converges.

One can show that if the series converges absolutely, then it also converges.
However, the converse is not true.

We have the following tests for checking the convergence or divergence of a
series of real numbers.

(i) Comparision test

(a) Let a series

∞
∑

k=0

ak of real numbers be given and let there exists a

convergent series

∞
∑

k=0

bk of nonnegative real numbers such that

|ak| ≤ bk, k ≥ 1

Then the orginal series

∞
∑

k=0

ak converges.

(b) Let a series
∞
∑

k=0

ak of real numbers be given and let there exists a

divergent series

∞
∑

k=0

dk of nonnegative real numbers such that

|ak| ≥ dk, k ≥ 1

Then the orginal series

∞
∑

k=0

ak diverges.

(ii) Ratio test

Let the series
∞
∑

k=0

ak( with an 6= 0) be such that lim
k→∞

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

= L.

(a) The series

∞
∑

k=0

ak converges absolutely if L < 1.

(b) The series
∞
∑

k=0

ak diverges if L > 1.

(c) No conclusion if L = 1.
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(iii) Root test

If the series

∞
∑

k=0

ak is such that lim
k→∞

(

(|ak|)
1
k

)

= L.

(a) The series

∞
∑

k=0

ak converges absolutely of L < 1.

(b) The series

∞
∑

k=0

ak diverges if L > 1.

(c) No conclusion if L = 1.

Theorem 6.1.1 If the power series given by Eq. (6.1.1) converges at a point
t = t1, then it converges absolutely for every t for which |t− t0| < |t1 − t0|.

Proof : Since the series given by Eq. (6.1.1) converges for t = t1, it follows
that the partial sums sn(t1) converge and hence sn(t1) is Cauchy. This implies
that

sn+1(t1) − sn(t1) → 0 as n→ ∞
This, in turn, implies that ck(t1 − t0)

k −→ 0 as k → ∞. Hence the elements
ck(t1 − t0)

k of the series given by Eq. (6.1.1) are bounded at t = t1. That is,

|ck(t1 − t0)
k| ≤M for all k ≥ 1 (6.1.2)

Eq. (6.1.2) implies that

|ck(t− t0)
k| =

∣

∣

∣

∣

∣

ck(t1 − t0)
k

(

t− t0
t1 − t0

)k
∣

∣

∣

∣

∣

≤ M

∣

∣

∣

∣

t− t0
t1 − t0

∣

∣

∣

∣

k

(6.1.3)

If |t−t0| < |t1−t0|, the series
∞
∑

k=0

∣

∣

∣

∣

t− t0
t1 − t0

∣

∣

∣

∣

k

converges and hence by comparision

test the series

∞
∑

k=0

ck(t− t0)
k converges absolutely.

Definition 6.1.2 If the series

∞
∑

k=0

ck(t− t0)
k converges absolutely for |t− t0| <

r and diverges for |t− t0| > r, then r is called the radius of convergence.

The power series

∞
∑

k=1

tk

k
converges for |t| < 1 and diverges for |t| > 1. At t = 1,

it diverges and t = −1, it converges. Thus, the radius of convergence of this
series is 1.
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The radius of convergence of the power series given by Eq. (6.1.1) may be
determined from the coefficients of the series as follows.

Theorem 6.1.2 (Radius of convergence)

(i) Suppose that the sequence {|ck|
1
k } converges . Let L denotes its limit.

Then, if L 6= 0, the radius of convergence r of the power series is
1

L
.

(ii) If L = 0, then r = ∞ and hence the series Eq. (6.1.1) converges for all t.

(iii) If {|ck|
1
k } does not converge, but it is bounded, then r =

1

l
where l =

sup{|ck|
1
k }. If this sequence is not bounded, then r = 0 and hence the

series is convergent only for t = t0.

Let

∞
∑

k=0

ck(t− t0)
k be a power series with non zero radius of convergence r.

Then the sum of the series is a function f(t) of t and we write

f(t) =

∞
∑

k=0

ck(t− t0)
k (6.1.4)

One can easily show the following.

(i) The function f(t) in Eq. (6.1.4) is continuous at t = t0.

(ii) The same function f(t) can not be represented by two different power
series with the same centre. That is, if

f(t) =

∞
∑

k=0

ck(t− t0)
k =

∞
∑

k=0

dk(t− t0)
k

in a disk: |t− t0| < r, then ck = dk for all k ≥ 0.

We can carry out the standard operations on power series with ease - addition
and subtraction, multiplication, term by term differentiation and integration.

(i) Addition and Subtraction

Two power series
∑∞

k=0 ck(t− t0)k and
∑∞

k=0 dk(t− t0)k can be added and
subtracted in the common radius of convergence.

If f(t) =
∞
∑

k=0

ck(t− t0)
k in |t− t0| < r1 and

g(t) =

∞
∑

k=0

dk(t− t0)
k in |t− t0| < r2

Then f(t) ± g(t) =

∞
∑

k=0

(ck ± dk)(t− t0)
k in |t− t0| < r = min(r1, r2).
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(ii) Multiplication

If f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r1 and

g(t) =

∞
∑

k=0

dk(t− t0)
k in |t− t0| < r2

Then h(t) = f(t)g(t) defined within the radius of convergence of each
series and

h(t) =

∞
∑

k=0

ck(t− t0)
k

where ck =

k
∑

m=0

cmdk−m. That is

h(t) = c0d0 + (c0d1 + c1d0) t+ (c0d2 + c1d1 + c2d0) t
2 + · · ·

The series converges absolutely within the radius of convergence of each
series.

(iii) Differentiation

Let f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r

Then

df

dt
= ḟ =

∞
∑

k=1

ckk(t− t0)
k−1 in |t− t0| < r

(iv) Integration

Let f(t) =

∞
∑

k=0

ck(t− t0)
k in |t− t0| < r

Then
∫

f(t)dt =

∞
∑

k=0

ck
k + 1

(t− t0)
k+1 in |t− t0| < r

Definition 6.1.3 We shall say that a function f(t) is analytic at t = t0 if it

can be expanded as a sum of a power series of the form
∞
∑

k=0

ck(t− t0)
k with

a radius of convergence r. It is clear that if f(t) is analytic at t0, then ck =
f (k)(t0)

k!
, k = 0, 1, 2, · · · ( fk(t0) denotes the kth derivative of f at t0).
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Example 6.1.2 We have the binomial expansion for (1 − t)−k for a fixed pos-
itive number k to give us

(1 − t)−k = 1 + kt+
k(k + 1)

2!
t2 +

k(k + 1)...(k + r − 1)

r!
tr + · · · for |t| < 1

We denote by

ur =
k(k + 1)...(k + r − 1)

r!

Then

(1 − t)−k =

∞
∑

r=0

urt
r, |t| < 1

As a power series can be differentiated term by term in its interval of conver-
gence, we have

k(1 − t)−k−1 =
∞
∑

r=1

rurt
r−1, |t| < 1

This gives

k(1 − t)−k 1

(1 − t)
=

∞
∑

r=1

rurt
r−1, |t| < 1

Again, using the power series expansion for
1

1 − t
= 1 + t+ t2 + · · · , we get

k

(

∞
∑

r=0

tr

)(

∞
∑

r=0

urt
r

)

=

∞
∑

r=1

rurt
r−1

Using the product formula for LHS, we get

k

∞
∑

r=0

tr
r
∑

l=0

ul =

∞
∑

r=0

(r + 1)ur+1t
r

Uniqueness of power series representation gives

(r + 1)ur+1 = k
r
∑

l=0

ul (6.1.5a)

where

ur =
k(k + 1).....(k + r − 1)

r!
, k is a fixed integer (6.1.5b)

We now make an attempt to define the concept of uniform convergence. To
define this concept, we consider the following series whose terms are functions
{fk(t)}∞k=0

∞
∑

k=0

fk(t) = f0(t) + f1(t) + f2(t) + · · · (6.1.6)

Note that for fk(t) = ck(t− t0)
k, we get the power series.
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Definition 6.1.4 We shall say that the series given by Eq. (6.1.6) with sum
f(t) in an interval I ⊂ < is uniformly convergent if for every ε > 0, we can find
N = N(t), not depending on t, such that

|f(t) − sn(t)| < ε for all n ≥ N(ε)

where sn(t) = f0(t) + f1(t) + · · · + fn(t).

Theorem 6.1.3 A power series
∞
∑

k=0

ck(t− t0)
k with nonzero radius of conver-

gennt is uniformly convergent in every closed interval |t − t0| ≤ p of radius
p < r.

Proof : For |t− t0| ≤ p and any positive integers n and l we have

∣

∣cn+1(t− t0)
n+1 + · · · + cn+l(t− t0)

n+l
∣

∣

≤ |cn+1| pn+1 + · · · + |cn+l| pn+l (6.1.7)

The series

∞
∑

k=0

ck(t− t0)
k converges absolutely if |t− t0| ≤ p < r ( by Theorem

6.1.1) and hence by Cauchy convergence, given ε > 0, ∃ N(ε) such that

|cn+1| pn+1 + · · · + |cn+p| pn+l < ε for n ≥ N(ε), l = 1, 2, ..

Eq. (6.1.7) gives

∣

∣cn+1(t− t0)
n+1 + · · · + cn+p(t− t0)

n+l
∣

∣

≤ |cn+1| pn+1 + · · · + |cn+p| pn+l < ε for n ≥ N(ε), |t− t0| ≤ p < r

This implies that, given ε > 0, ∃ N(ε) such that |f(t) − sn(t)| < ε for n ≥ N(ε)

and all t where sn(t) =

n
∑

k=0

ck(t− t0)
k. This proves the uniform convergence of

the power series inside the interval |t− t0| ≤ p < r.

Example 6.1.3 The geometric series 1 + t+ t2 + · · · is uniformly convergent
in the interval |t| ≤ p < 1. It is not uniformly convergent in the whole interval
|t| < 1.

6.2 Linear System with Analytic Coefficients

We now revisit the non-autonomous system in <n

dx̄

dt
= A(t)x̄ + g(t) (6.2.1)

x̄(0) = x̄0
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where the matrix A(t) is analytic at t = 0 and hence has the power series
representation

A(t) =
∞
∑

k=0

Akt
k (6.2.2)

in its interval of convergence |t| < r. Here each Ak is n× n matrix.
So, the homogeneous system corresponding to Eq. (6.2.1) is given by

dx̄

dt
=

∞
∑

k=0

Akt
kx̄ (6.2.3)

x̄(0) = x̄0

We shall look for analytic solution of Eq. (6.2.3), which is of the form x̄(t) =
∞
∑

k=0

c̄kt
k. The vector coefficients c̄k are to be determined. The point t = 0 is

called ordinary point of the above system.

The following theorem gives the analytic solution of the system given by Eq.
(6.2.3)

Theorem 6.2.1 The homogeneous system given by Eq. (6.2.3) has analytic

solution x̄(t) =

∞
∑

k=0

c̄kt
k in the interval of convergence |t| < r. This solution x̄(t)

is uniquely determined by the initial vector x̄0.

Proof : Let x̄(t) =

∞
∑

k=0

c̄kt
k, where the vector coefficient c̄k are yet to deter-

mined. Plugging this representation in Eq. (6.2.3) we get

∞
∑

k=1

kc̄kt
k−1 =

(

∞
∑

k=0

Akt
k

) (

∞
∑

k=0

c̄kt
k

)

=

∞
∑

k=0

(

k
∑

l=0

Ak−lc̄l

)

tk

Equivalently, we have

∞
∑

k=0

(k + 1)c̄k+1t
k =

∞
∑

k=0

(

k
∑

l=0

Ak−l c̄l

)

tk (6.2.4)

Uniqeness fo power series in the interval |t| < r, gives

(k + 1)c̄k+1 =

k
∑

l=0

Ak−l c̄l (6.2.5)



6.2. LINEAR SYSTEM WITH ANALYTIC COEFFICIENTS 183

and hence

(k + 1) ‖c̄k+1‖ ≤
k
∑

l=0

‖Ak−l‖ ‖c̄l‖ (6.2.6)

By Theorem 6.1.3, the power series

∞
∑

k=0

Akt
k converges absolutely and uniformly

in the interval |t| ≤ p < r and hence the terms Akp
k must be uniformly bounded.

That is, ∃M such that

‖Ak‖pk ≤M, k ≥ 0 (6.2.7)

Using the above inequality in Eq. (6.2.6), we get

(k + 1)‖c̄k+1‖ ≤
k
∑

l=0

M
‖c̄l‖
pk−l

Put dl = pl‖c̄l‖, then the above inequality becomes

(k + 1)dk+1 ≤Mp

k
∑

l=0

dl (6.2.8)

Using Eq. (6.2.8) inductively, we get

d1 ≤ Mpd0

d2 ≤ Mp

2
(d0 + d1)

≤ 1

2

(

Mp+M2p2
)

d0

...

dk ≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!
d0 (6.2.9)

To claim that Eq. (6.2.8) holds for all k, we need to prove this inequality by
induction. So, let this inequality be true for all r < k. By Eq. (6.2.8), we have

(r + 1)dr+1 ≤ Mp‖c̄0‖
r
∑

l=0

dl

≤ Mp‖c̄0‖
r
∑

l=0

Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ l − 1)

l!

Using the notation of Example 6.1.2, set

ul =
Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ l − 1)

l!
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Hence using Eq. (6.1.5), we get

(r + 1)dr+1 ≤ Mp‖c̄0‖
r
∑

l=0

ul

= ‖c̄0‖(r + 1)ur+1

This gives

(r + 1)dr+1 ≤ (r + 1)
Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ r)

(r + 1)!
‖c̄0‖

That is

dr+1 ≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ r)

(r + 1)!
‖c̄0‖

This proves the induction.
Hence, it follows that

‖c̄k‖ =
dk

pk
≤ Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!pk
‖c̄0‖

This gives

‖x̄‖ =

∥

∥

∥

∥

∥

∞
∑

k=0

c̄kt
k

∥

∥

∥

∥

∥

≤ ‖c̄0‖ ×
(

∞
∑

k=0

Mp(Mp+ 1)(Mp+ 2) + · · · + (Mp+ k − 1)

k!

( |t|
p

)k
)

That is

‖x̄‖ ≤ ‖c̄0‖
(

1 − |t|
p

)Mp
(6.2.10)

provided |t| ≤ p < r.
This proves the existence of analytic solution of the system given by Eq. (6.2.3),
This solution is uniquely determined by the initial value x̄0. For if x̄(t) and ȳ(t)
are two different solutions of the initial value problem given by Eq. (6.2.3), then
z̄(t) = x̄(t) − ȳ(t) is the solution of the initial value problem

dz̄

dt
= A(t)z̄(t)

z̄(0) = 0̄

Since c̄0 = 0, it follows that z̄ = 0̄, thereby implying that x̄ = ȳ.
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Example 6.2.1 ( Legendre Differential Equation)

(1 − t2)
d2x

dt2
− 2t

dx

dt
+ n(n+ 1)x = 0 (6.2.11)

By substituting x1 = x, x2 =
dx

dt
, this differential equation is equivalent to the

following linear homogeneous system

dx̄

dt
= A(t)x̄(t)

where

A(t) =







0 1

−n(n+ 1)

1 − t2
2t

1 − t2







As A(t) is analytic in the interval |t| < 1, it follows by Theorem 6.2.1 that

Eq. (6.2.11) has a unique analytic solution of the form
∞
∑

k=0

ckt
k. We shall now

determine the coefficients ck. We substitute

x(t) =

∞
∑

k=0

ckt
k,

dx

dt
=

∞
∑

k=1

kckt
k−1,

d2x

dt2
=

∞
∑

k=2

k(k − 1)ckt
k−2

in Eq. (6.2.11) to get

(1 − t2)

∞
∑

k=2

k(k − 1)ckt
k−2 − 2t

∞
∑

k=1

kckt
k−1 + n(n+ 1)

∞
∑

k=1

ckt
k = 0

Equivalently, we have

∞
∑

k=0

[(k + 2)(k + 1)ck+2 + ck [n(n+ 1) − (k − 1)k − 2k]] tk = 0

The uniqueness of series representaion in |t| < 1 gives

ck+2 = − [n(n+ 1) − (k − 1)k − 2k]

(k + 2)(k + 1)
ck

= − (n− k)(n+ k + 1)

(k + 2)(k + 1)
ck, k = 0, 1, 2, · · · (6.2.12)

This gives us

c2 = −n(n+ 1)

2!
c0, c4 = − (n+ 3)(n− 2)

4.3
c2 =

(n+ 3)(n+ 1)n(n− 2)

4!
c0

c3 = − (n+ 2)(n− 1)

3!
c1, c5 = − (n+ 4)(n− 3)

5.4
c3

=
(n+ 4)(n+ 2)(n− 3)(n− 1)

5!
c1
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and hence the coefficients ck’s are inductively defined.
So, we have

x(t) = c0x1(t) + c1x2(t)

x1(t) = 1 − n(n+ 1)

2!
t2 +

(n− 2)n(n+ 1)(n+ 3)

4!
t4 − · · ·

x2(t) = t− (n− 1)(n+ 2)

3!
t3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
t5 − · · ·

Since RHS of Eq. (6.2.12) is zero for k = n, we have 0 = cn+2 = cn+4 = · · ·
and hence if n is even, x1(t) reduces to a polynomial of degree n and if n is odd,
the same is true for x2(t). These polynomials multiplied by some constants, are
called Legendre polynomials.

In Eq. (6.2.12), writing ck in terms of ck+2, we get

ck = − (k + 2)(k + 1)

(n− k)(n+ k + 1)
ck+2 (k ≤ n− 2)

This gives

cn−2 = − n(n− 1)

2(2n− 1)
cn

We fix cn and then compute the lower order coefficients. It is standard to choose

cn = 1 when n = 0 and
2n!

2n(n!)2
=

1.3.5...(2n− 1)

n!
for n 6= 0. This defines

cn−2 = − n(n− 1)

2(2n− 1)

(2n)!

2n(n!)2

= − n(n− 1)2n(2n− 1)(2n− 2)!

2(2n− 1)2n(n− 1)!n(n− 1)(n− 2)!

= − (2n− 2)!

2n(n− 1)!(n− 2)!

In general

cn−2m =
(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!

So we get a solution of Legendre differential equation given by Eq. (6.2.11) as

Pn(t) =

M
∑

m=0

(−1)m(2n− 2m)!

2nm!(n−m)!(n− 2m)!
tn−2m

where M =
n

2
or

n− 1

2
whichever is an integer. Some of the Legendre polyno-

mials are given as below
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P0(t) = 1, P1(t) = t, P2(t) =
1

2
(3t2 − 1), P3(t) =

1

2
(5t3 − 3t)

P4(t) =
1

8
(35t4 − 30t2 + 3), P5(t) =

1

8
(63t5 − 70t3 + 15t)

We shall discuss the properties of Legendre differential equation in section 4.

Example 6.2.2 (Hermite Differential Equation)
In the study of the linear harmonic oscillator in quantum mechanics, one en-
counters the following deifferential equation

d2u

dt2
+
[

λ− t2
]

u(t) = 0 (6.2.13)

over the interval (−∞, ∞). As we look for the solution u ∈ L2(−∞, ∞), we

put u(t) = e

“

−t2

2

”

x(t). So Eq. (6.2.13) becomes

d2x

dt2
− 2t

dx

dt
+ (λ− 1)x = 0

We take λ = 2n+ 1 and get the equation

d2x

dt2
− 2t

dx

dt
+ 2nx = 0 (6.2.14)

Eq. (6.3.13) (or alternatively Eq. (6.2.14)) is called Hermite differential equa-
tion.

As the coefficient of the differential equation given by Eq. (6.2.14) are analytic
in (−∞,∞), we get a series solution of the form

x(t) =

∞
∑

k=0

ckt
k for −∞ < t <∞ (6.2.15)

Plugging the representation for x(t),
dx

dt
and

dx2

dt2
in Eq. (6.2.14) we see that

ck satisfy the recurrence relation

ck+2 =
2k + 1− (2n+ 1)

(k + 2)(k + 1)
ck

=
2(k − n)

(k + 2)(k + 1)
ck (6.2.16)

It is clear that cn+2 = 0 and hence the solution given by Eq. (6.2.15) is a
polynomial. As in the previous example, we normalize cn and put it equal to
2n and then compute the coefficients in descending order. This gives us the
solution, which is denoted by Hn(t), the Hermite polynomial. It is given by

Hn(t) =

M
∑

m=0

(−1)mn!

m!(n− 2m)!
(2t)n−2m

We shall discuss the properties of the Hermite polynomials in section 4.
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6.3 Linear System with Regular Singularities

A system of the form

dx̄

dt
=

1

t− t0
A(t)x̄ (6.3.1)

where A(t) is analytic at t0, is said to have a regular singularity at t0.

As before, we can assume that t0 = 0 and A(t) has series representation of the
form

A(t) =
∞
∑

k=0

Akt
k (6.3.2)

in the interval of the convergence |t| < r.

Eq. (6.3.1) then reduces to the equation of the form

dx̄

dt
=

1

t

(

∞
∑

k=0

Akt
k

)

x̄ (6.3.3)

We prove the following theorem, giving the existence of a series solution of the
equation given by Eq. (6.3.3)

Theorem 6.3.1 The differential equation given by Eq. (6.3.3) has a series

solution of the form x̄(t) = tµ
∞
∑

k=0

c̄kt
k in the interval |t| < r, provided µ is an

eigenvalue of A0 and no other eigenvalue of the form µ+n exists for A0, where
n is a positive integer.

Proof : We introduce a new dependent variable ȳ(t) = tµx̄(t). This gives

dȳ

dt
=

1

t
[A(t) − µI ] ȳ(t)

=
1

t

[

∞
∑

k=0

Akt
k − µI

]

ȳ(t)

Assuming that ȳ(t) =

∞
∑

k=0

c̄kt
k, we get
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∞
∑

k=1

c̄kkt
k =

∞
∑

k=0

[(

k
∑

l=0

Ak−lc̄l

)

− µc̄k

]

tk. This gives us the recurrence relations

(A0 − µI)c̄0 = 0

(A0 − (µ+ I)) c̄1 = −A1c̄0 (6.3.4)

...

(A0 − (µ+ n)I)c̄n = −
n−1
∑

l=0

An−lc̄l

...

Since |(A0 − (µ+n)I)c̄n| 6= 0 for all n ≥ 1, the above relations iteratively define

c̄0, c̄1, · · · , c̄n, · · · We shall now show that the series x(t) = tµ
∞
∑

k=0

c̄kt
k converges.

As in Section 6.2, for some positive numbers M , and p < r we have

‖Ak‖pk ≤M, k = 0, 1, 2, · · · (6.3.5)

We first observe the following

(i) |A0 − (µ+ k)I | 6= 0 for all positive integer k

(ii) lim
k→∞

∣

∣

∣

∣

A0 −
(µ+ k)

k
I

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

(A0 − µI)

k
− k

k
I

∣

∣

∣

∣

= n

In view of property (ii), it follows that there exists a positive quantity ε > 0
such that

‖A0 − (µ+ k)I‖
k

> ε, k = 1, 2, 3, · · ·

So, the recurrence relation given by Eq. (6.3.4) provides

(k + 1)c̄k+1 = [A0 − (µ+ k + 1)I ]
−1

(k + 1)

k
∑

l=0

Ak+1−lc̄l

Using Eq. (6.3.5) and (ii) we get

(k + 1) ‖c̄k+1‖ ≤ M(k + 1)

ε

k
∑

l=0

‖c̄l‖
pk+1−l

Equivalently,

(k + 1) ‖c̄k+1‖ pk+1 ≤ M

ε
(k + 1)

k
∑

l=0

‖c̄l‖pl
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Proceeding as in Theorem 6.2.1, we have the relation

‖c̄k‖ ≤
(

M
ε

) (

M
ε + 1

)

· · ·
(

M
ε + k − 1

)

k!pk
‖c̄0‖

for all k ≥ 1.

Applying this estimate to the series expansion for x̄(t), we get

‖x̄(t)‖ ≤
∥

∥

∥

∥

∥

tµ
∞
∑

k=0

c̄kt
k

∥

∥

∥

∥

∥

≤ |t|µ‖c̄0‖
∞
∑

k=0

(

M
ε

) (

M
ε + 1

)

· · ·
(

M
ε + k − 1

)

k!

( |t|
p

)k

=
|t|µ‖c̄0‖

(

1 − |t|
p

)

M

ε

in the interval of uniform convergence |t| ≤ p < r.
This proves the theorem.

Example 6.3.1 (Bessel’s Equation)

t2
d2x

dt2
+ t

dx

dt
+ (t2 − µ2)x(t) = 0 (6.3.6)

⇐⇒ d2x

dt2
+

1

t

dx

dt
+ (1 − µ2

t2
)x(t) = 0

We use the substitution x1 = x(t), x2 = tẋ(t) to get

dx1

dt
=

1

t
x2

dx2

dt
=

dx1

dt
+ t

d2x1

dt2

=
dx1

dt
− dx1

dt
− (t− µ2

t
)x1(t)

= −1

t
(t2 − µ2)x1(t)

This reduces Eq. (6.3.6) to

dx̄

dt
=

1

t





0 1

µ2 − t2 0



 x̄

=
1

t

[

A0 +A2t
2
]

x̄
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where A0 =

(

0 1
µ2 0

)

, A2 =

(

0 0
−1 0

)

. It is clear that A is analytic in

(−∞, ∞) and A0 has eigenvalues ±µ.
Case 1: µ is not an integer
Then Eq. (6.3.6) has solution of the form x(t) = tµ

∑∞
k=0 c̄kt

k in (−∞, ∞).

For the eigenvalue µ > 0, plugging the representation

x(t) =

∞
∑

m=0

cmx
m+µ,

dx

dt
=

∞
∑

m=0

cm(m+ µ)tm+µ−1

d2x

dt2
=

∞
∑

m=0

cm(m+ µ)(m+ µ− 1)tm+µ−2

in Eq. (6.3.6) we get the recurrence relation

c2m = − 1

22m(µ+m)
c2m−2, m = 1, 2 · · ·

c2m+1 = 0, m = 0, 1, 2, · · ·

This gives

c2 = − c0
22(µ+ 1)

c4 = − c2
222(µ+ 2)

=
c0

242!(µ+ 1)(µ+ 2)

...

c2m =
(−1)mc0

22mm!(µ+ 1)(µ+ 2) · · · (µ+m)
, (6.3.7)

m = 1, 2, · · ·
c2m+1 = 0, m = 0, 1, 2, 3, · · ·

Now define the gamma function Γ(µ) as

Γ(µ) =

∫ ∞

0

e−ttµ−1dt, µ > 0

which is a convergent integral. Γ(µ) satisfies the property that Γ(µ+1) = µΓ(µ)

and Γ(n+ 1) = n! If we put c0 =
1

2µ
Γ(µ+ 1), then c2m is given by

c2m =
(−1)m

22m+µm!(µ+ 1)(µ+ 2) · · · (µ+m)Γ(µ+ 1)

=
(−1)m

22m+µm!Γ(µ+m+ 1)
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This gives us the first solution Jµ(t), called Bessl’s function of order µ of the
differential equation given by Eq. (6.3.6), as

Jµ(t) = tµ
∞
∑

m=0

(−1)mt2m

22m+µm!Γ(µ+m+ 1)

Extending gamma function for µ < 0, we get the representation for the second
solution J−µ(t) as

J−µ(t) = t−µ
∞
∑

m=0

(−1)mt2m

22m−µm!Γ(−µ+m+ 1)

Jµ(t) and Jµ(t) are linearly independent.

Case 2: µ = n integer
We have

Jn(t) = tn
∞
∑

m=0

(−1)mt2m

22m+nm!(n+m)

One can easily derive that

J−n(t) = (−1)nJn(t)

This gives

J0(t) =

∞
∑

m=0

(−1)mt2m

22m(m!)2

= 1 − t2

22(1!)2
+

t4

24(2!)2
− t6

26(3!)2
+ · · ·

J1(t) =

∞
∑

m=0

(−1)mt2m+1

22m+1(k!)(k + 1)!

= t− t3

23(1!)(2!)
+

t5

25(2!)(3!)
− t7

27(3!)(4!)
+ · · ·

J0 looks similar to cosine function and J1 looks similar to sine function. The
zeros of these functions are not completely regularly spaced and also oscillations
are damped as we see in the following graphics.
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Figure 6.3.1: Sketch of J0 and J1

Example 6.3.2 (Bessel’s equation of order zero)
Consider the equation

x
d2x

dt2
+
dx

dt
+ x = 0

This is equivalent to the first order system of the form

dx̄

dt
= −1

t

(

0 1
−t2 0

)

x̄ (6.3.8)

where x1 = x, x2 = t
dx

dt
.

As we have seen before, a solution of this system is given by

x1(t) =

∞
∑

k=0

(−1)kt2k

4k(k!)2
(6.3.9)

x2(t) =

∞
∑

k=0

(−1)kt2k

4k(k!)2
(6.3.10)

To get another solution ȳ(t) linearly independent of x̄(t) and satisfying Eq.
(6.3.8), we set

ȳ(t) = ψ(t)z̄(t) where ψ(t) =





1 x1

0 x2



 .
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This gives
dȳ

dt
=
dφ

dt
z̄(t) + ψ(t)

dz̄

dt
= A(t)ψ(t)x̄(t)

That is






0
1

t
x2

0 −tx1






z̄ +





1 x1

0 x2





dz

dt
=







0
1

t
x2

−t −tx1






z̄(t)

Solving for
dz

dt
we get





1 x1

0 x2





dz

dt
=





0 0

−t 0



 z̄(t)

and hence

dz

dt
=









t
x1

x2
0

− t

x2
0









z̄(t)

So, we need to solve

dz1
dt

= t
x1

x2
z1 = − ẋ2

x2
z1 (6.3.11a)

dz2
dt

= − t

x2
z1 (6.3.11b)

Integrating Eq. (6.3.11(a)) - Eq. (6.3.11(b)) we get

z1 =
c1
x2
, z2 = −c1

∫

t

x2
2(t)

dt

Hence ȳ(t) = ψ(t)z̄(t) is given by

ȳ(t) =











c1
x2

− c1x1

∫

tdt

x2
2(t)

−c1x2

∫ t

x2
2(t)

dt











That is

y1(t) =
c1
x2

− c1x1

∫ [−ẋ2/x1

x2
2

]

dt

= −c1x1

∫

ẋ2

x2x2
1

dt

= −c1x1

∫

1

tx2
1

dt
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y2(t) = −c1x2

∫

t

x2
2

dt

Using the represntations of Eq. (6.3.9) - Eq. (6.3.10), we get

x1(t) = 1 − t2

4
+ · · ·

x2(t) = − t
2

2
+
t4

16
+ · · ·

This gives

x1

∫

dt

tx2
1

= x1

∫

1 + t2

2 + · · ·
t

dt

= x1lnt+ x1(
t2

4
+ · · · )

and

x2

∫

t

x2
2

dt = 4x2

∫ t
(

1 + t2

4 + · · ·
)

t4
dt

=
−2x2

t2
+ x2lnt+ · · ·

Hence, it follows that the second solution ȳ(t), linearly independent of x(t), is
given by

y(t) = x(t)lnt+ x(t)

(

1 +
t2

4
+ · · ·

)

To be more precise, one can show that

y(t) = J0(t)lnt+

∞
∑

m=1

(−1)mhmt
2m

22m(m!)2

where hm =
(

1 + 1
2 + · · · + 1

m

)

.

The function Y0(t) defined as

Y0(t) = ay(t) + bJ0(t), a =
2

π
, b = r − ln2

where r is the Euler’s constant limn→∞

(

1 + 1
2 + · · · + 1

m − lnn
)

is called the
Bessel’s function of the second kind (order zero). Hence, it is given by

Y0(t) =
2

π

[

J0(t)

(

ln
t

2
+ r

)

+

∞
∑

m=1

(−1)mhmt
2m

22m(m!)2

]
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6.4 Properties of Legendre, Hermite and Bessel

Functions

Legendre polynomial Pn(t) is a solution of the differential equation

(1 − t2)
d2x

dt2
− 2t

dx

dt
+ n(n+ 1)x(t) = 0 (6.4.1)

In terms of the notation of Chapter 6, this is eigenvalue problem of the form

Lx = λx (6.4.2)

where L is the second order differential operator

Lx = (1 − t2)
d2x

dt2
− 2t

dx

dt
=

d

dt

(

(1 − t2)
dx

dt

)

(6.4.3)

We can think of L as an operator defined on L2[−1, 1] with D(L) as the set of
all functions having second order derivatives.

Then Green’s formula (to be done in Section 7.1) gives

∫ 1

−1

(yLx− xL∗y) dt = J(x, y)

∣

∣

∣

∣

1

−1

where J(x, y)|1−1 = a0

(

y
dx

dt
− x

dy

dt

)∣

∣

∣

∣

1

−1

with a0(t) = (1 − t2).

As a0(1) = a0(−1) = 0, it follows that J(x, y)|1−1 = 0 and hence

∫ 1

−1

(yLx− xL∗y) dt = 0 ∀x, y ∈ D(L) = D(L∗)

That is L∗ = L and D(L∗) = D(L).

We appeal to Theorem 7.5.1, of Chapter 7 to claim that the eigenfunctions
of L form a complete orthonormal set. We have already proved in Example
6.2.1 that Eq. (6.4.1) has sequence of eigenvalues {n(n + 1)} with {Pn(t)}
corresponding eigenfunctions and hence they are orthogonal. However, for the
sake of completeness we prove this result directly.

Theorem 6.4.1 The set of Legendre polymonials {Pn(t)} satisfying Eq. (6.4.1)
are orthogonal set of polynomials in L2[−1, 1].

Proof : We have

d

dt

(

(1 − t2)
dPn

dt

)

= −n(n+ 1)Pn(t) (6.4.4)

d

dt

(

(1 − t2)
dPm

dt

)

= −m(m+ 1)Pm(t) (6.4.5)
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Multiplying Eq. (6.4.4) by Pm(t) and Eq. (6.4.5) by Pn(t) and substracting the
equations and integrating, we get

∫ 1

−1

[m(m+ 1) − n(n+ 1)]Pm(t)Pn(t)dt

=

∫ 1

−1

[

d

dt

(

(1 − t2)
dPn

dt

)

Pm(t) − d

dt

(

(1 − t2)
dPm

dt
Pn(t)

)]

dt

=
[

(1 − t2)
[

Ṗn(t)Pm(t) − Ṗm(t)Pn(t)
]]1

−1

−
∫ 1

−1

[

(1 − t2)
[

Ṗn(t)Ṗm(t) − Ṗm(t)Ṗn(t)
]]

= 0

Hence (Pm, Pn) =
∫ 1

−1
Pm(t)Pn(t)dt = 0. That is Pm ⊥ Pn.

Theorem 6.4.2 The Legendre polynomials Pn(t) satisfy the Rodrigues formula

Pn(t) =
1

2nn!

dn

dtn
[

(t2 − 1)n
]

, n = 0, 1, 2, · · · (6.4.6)

Proof : We have

Pn(t) =
1

2nn!

M
∑

k=0

(−1)kn!

k!(n− k)!

(2n− 2k)!

(n− 2k)!
tn−2k

Since
dn

dtn
[

t2n−2k
]

=
(2n− 2k)!

(n− 2k)!
tn−2k, it follows that

Pn(t) =
1

2nn!

dn

dtn

[

M
∑

k=0

(−1)kn!

k!(n− k)!
t2n−2k

]

It is now clear that the sum

[

∑M
k=0

(−1)kn!

k!(n− k)!
t2n−2k

]

is the binomial expansion

of (t2 − 1)n and hence

Pn(t) =
1

2nn!

dn

dtn
(t2 − 1)n

Definition 6.4.1 Let {fn(t)} be a sequence of functions in an interval I. A
function F (t, u) is said to be a generating function of this sequence if

F (t, u) =

∞
∑

n=0

fn(t)un (6.4.7)
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We have the following theorem giving the generating function for the sequence
{Pn(t)} of Legendre polynomials.

Theorem 6.4.3 For Legendre polynomials {Pn(t)}, we have

(1 − 2tu+ u2)−
1
2 =

∞
∑

n=0

Pn(t)un (6.4.8)

Proof : Let |t| ≤ r (arbitary positive number) and |u| < (1 + r2)
1
2 − r. Then

|2tu− u2| ≤ 2|t||u| + |u2|
≤ 2r(1 + r2)

1
2 − 2r2 + (1 + r2) + r2 − 2r(1 + r2)

1
2

= 1

So expanding (1 − 2tu+ u2)−
1
2 in a binomial series, we get

[1− u(2t− u)]
− 1

2 = 1 +
1

2
u(2t− u) +

1

2

3

4
u2(2t− u)2 + · · ·

+
1.3......(2n− 1)

1.2.....(2n)
un(2t− u)n + · · ·

The coefficient of un in this expression is

1.3......(2n− 1)

2.4....(2n)
(2t)n − 1.3......(2n− 3)

2.4....(2n− 2)
(2t)n−2 + · · ·

=
1.3......(2n− 1)

n!

[

tn − n(n− 1)

(2n− 1)2
tn−2 +

n(n− 1)(n− 2)(n− 3)

(2n− 1)(2n− 3)2.4
tn−4 + · · ·

]

= Pn(t)

Theorem 6.4.4 The Legendre polynomials satisfy the following recurrence re-
lation

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t) − nPn−1(t), n = 1, 2, ... (6.4.9)

Proof : Differentiating the relation given by Eq. (6.4.8) with respect to u, we
get

(t− u)(1 − 2tu+ u2)−
3
2 =

∞
∑

n=1

nPn(t)un−1

This gives

(t− u)(1 − 2tu+ u2)−
1
2 = (1 − 2tu+ u2)

∞
∑

n=0

nPn(t)un−1
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That is

(t− u)

∞
∑

n=1

Pn(t)un = (1 − 2tu+ u2)

∞
∑

n=0

nPn(t)un−1

Equivalently,

∞
∑

n=0

tPn(t)un −
∞
∑

n=0

Pn(t)un+1

=

∞
∑

n=1

nPn(t)un−1 − 2

∞
∑

n=1

ntPn(t)un

+

∞
∑

n=0

nPn(t)un+1

Rewriting, we get

∞
∑

n=1

tPn(t)un −
∞
∑

n=1

Pn−1(t)u
n

=

∞
∑

n=1

(n+ 1)Pn+1(t)u
n − 2

∞
∑

n=1

ntPn(t)un

+

∞
∑

n=1

(n− 1)Pn−1(t)u
n

Comparing the coefficient of un, we get

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t) − nPn−1(t)

Corollary 6.4.1

‖Pn‖2 =

∫ 1

−1

P 2
n(t)dt =

2

2n+ 1
(6.4.10)

Proof : Recurrence relation gives

(2n+ 1)tPn(t) = (n+ 1)Pn+1(t) + nPn−1(t)

(2n− 1)tPn−1(t) = nPn(t) + (n− 1)Pn−2(t)

These two equations give

0 =

∫ 1

−1

[tPn(t)Pn−1(t) − tPn−1(t)Pn(t)] dt

=
(n+ 1)

(2n+ 1)

∫ 1

−1

Pn+1(t)Pn−1(t) +
n

(2n+ 1)

∫ 1

−1

P 2
n−1(t)dt

− (n− 1)

(2n− 1)

∫ 1

−1

Pn−2(t)Pn(t) − n

(2n− 1)

∫ 1

−1

P 2
n(t)dt
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This implies that

∫ 1

−1

P 2
n(t)dt =

(2n− 1)

(2n+ 1)

∫ 1

−1

P 2
n−1(t)dt

and hence

∫ 1

−1

P 2
n(t)dt =

(2n− 1)

(2n+ 1)

(2n− 3)

(2n− 1)
· · · 2

1

∫ 1

−1

P 2
0 (t)dt

=
2

(2n+ 1)

We now examine the properties of the Hermite polynomials. Recall that Hermite
polynomial Hn(t) satisfy the differential equation

d2x

dt2
− 2t

dx

dt
+ 2nx = 0

and is given by

Hn(t) =

∞
∑

k=0

(−1)nn!

k!(n− 2k)!
(2t)n−2k

We have the following theorem concerning the orthogonality of {Hn(t)} in

L2(−∞, ∞) with respect to the weight function e−t2 .

Theorem 6.4.5 The Hermite Polynomials Hn(t) are orthogonal set of polyno-

mials in the space L2(−∞, ∞) with respect to the weight function e−t2 .

Theorem 6.4.6 For Hermite polynomials Hn(t), we have the following formu-
lae.

(i) Rodgriues formula

Hn(t) = (−1)et2 d
n

dtn
e−t2

(ii) Generating function

e2tu−u2

=

∞
∑

n=0

Hn(t)
un

n!

(iii) Recurrence relation

Hn+1(t) = 2tHn(t) − 2nHn−1(t), H0 = 1, H1 = 2t

We now enunciate the properties of the Bessel’s function Jn(t).



6.4. PROPERTIES OF LEGENDRE, HERMITE AND BESSEL FUNCTIONS201

Theorem 6.4.7 For each fixed nonnegative integer n, the sequence of Bessel
functions Jn(kmt), where km are the zeros of Jn(k), form an orthogonal set in
L2[0, 1] with respect to the weight function t. That is

∫ 1

0

tJn(klt)Jn(kmt)dt = 0, l 6= m (6.4.11)

Proof : The Bessel function Jn(t) satisfies the differential equation (refer Eq.
(6.3.6))

t2J̈n(t) + tJ̇n(t) + (t2 − n2)Jn(t) = 0

Set t = ks, then the above equation reduces to the differential equation

d

ds

[

sJ̇n(ks)
]

+

(

−n
2

s
+ k2s

)

Jn(ks) = 0 (6.4.12)

Let km be the zeros of the Bessel function Jn(k), then we have

d

ds

[

sJ̇n(kls)
]

+

(

−n
2

s
+ k2

l s

)

Jn(kls) = 0 (6.4.13)

and
d

ds

[

sJ̇n(kms)
]

+

(

−n
2

s
+ k2

ms

)

Jn(kms) = 0 (6.4.14)

Eq. (6.4.13) - Eq. (6.4.14) give

(k2
l − k2

m)

∫ 1

0

sJn(kls)Jn(kms)ds

=

∫ 1

0

[

d

ds

[

sJ̇n(kls)
]

Jn(kms) −
d

ds

[

sJ̇n(kms)
]

Jn(kls)

]

ds

= 0, kl 6= km

using the fact that Jn(kl) = 0 = Jn(km).

Theorem 6.4.8 The generating function for the sequence {Jn(t)} of Bessel
functions is given by

exp

(

1

2
t

(

u− 1

u

))

=
∞
∑

n=−∞

Jn(t)un (6.4.15)

and hence J−n(t) = (−1)nJn(t).
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Proof : Expanding exp
(

1
2 t
(

u− 1
u

))

in powers of u, we get

exp

(

1

2
t

(

u− 1

u

))

=

(

exp
1

2
tu

)(

exp
1

2

(−t
u

))

=

(

∞
∑

k=0

(tu)k

2kk!

)(

∞
∑

l=0

(−t)l

2ll! ul

)

=

∞
∑

−∞

cn(t)un

The coefficient cn(t) of un in the above expression is

∞
∑

k=0

(−1)k

(

t

2

)2k+n

k!(k + n)!
= Jn(t)

and hence we get the generating function relation given by Eq. (6.4.15) for
Jn(t).

If we replace u by −1

v
in Eq. (6.4.15), we get

exp(
1

2
(v − 1

v
)t) =

∞
∑

n=−∞

Jn(t)(−1)nv−n

=
∞
∑

n=−∞

J−n(t)vn

Hence, it follows that J−n(t) = (−1)nJn(t)

Theorem 6.4.9 The Bessel functions Jµ(t) satisfy the following recurrence re-
lations

Jµ−1(t) + Jµ+1(t) =
2µ

t
Jµ(t) (6.4.16a)

Jµ−1(t) − Jµ+1(t) = 2Jµ(t) (6.4.16b)

Proof : We have

Jµ(t) = tµ

(

∞
∑

k=0

(−1)kt2k

22k+µ(k!)Γ(µ+ k + 1)

)

Multiplying Jµ(t) by tµ and pulling t2µ under the summation, we have

tµJµ(t) =

∞
∑

k=0

(−1)kt2k+2µ

22k+µ(k!)Γ(µ+ k + 1)
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Differentiating the above expression we have

d

dt
(tµJµ(t)) =

∞
∑

k=0

(−1)k2(k + µ)t2k+2µ−1

22k+µ(k!)Γ(µ+ k + 1)

= tµtµ−1
∞
∑

k=0

(−1)kt2k

22k+µ−1(k!)Γ(µ+ k)

= tµJµ−1(t)

Thus, we have
d

dt
(tµJµ(t)) = tµJµ−1(t)

and
d

dt

(

t−µJµ(t)
)

= −t−µJµ+1(t)

Expanding the LHS of the above expressions, we have

µtµ−1Jµ + tµJ̇µ = tµJµ−1

−µtµ−1Jµ + tµJ̇µ = −tµJµ+1

Adding and substracting the above relations, we get

Jµ−1 + Jµ+1 =
2µ

t
Jµ(t)

Jµ−1 − Jµ+1 = 2J̇µ(t)

Corollary 6.4.2 From the definition of Jµ(t), we have

J 1
2
(t) =

√

2

πt
sin t, J− 1

2
(t) =

√

2

πt
cos t

and hence the above recurrence relations give

J 3
2
(t) =

√

2

πt

(

sin t

t
− cos t

)

J− 3
2
(t) =

√

2

πt

(

−cos t

t
− sin t

)

We have the following graphics for the above functions.
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1
J-1\2

J1\2

Figure 6.4.2: Sketch of J−1/2(t) and J1/2(t)

5 10 15 20
t

-1

-0.75

-0.5

-0.25
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0.5
J3\2

J-3\2

Figure 6.4.3: Sketch of J3/2(t) and J−3/2(t)

For more details on varioius topics in this chapter, refer Agarwal and Gupta
[1], Brown and Churchill [2], Hochstadt [3] and Kreyzig [4].
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6.5 Exercises

1. Let the functions f, g : < → < be defined as follows

f(t) =











sin t

t
, t 6= 0

1, t = 0

, g(t) =















1 − cos t

t2
, t 6= 0

1

2
, t = 0

Show that f and g are analytic at t = 0.

2. Find the series solution of the following IVPs

(i) ẍ+ tẋ− 2x = 0, x(0) = 1, ẋ(0) = 0

(ii) t(2 − t)ẍ− 6(t− 1)ẋ− 4x = 0, x(1) = 1, ẋ(1) = 0

(iii) ẍ+ etẋ+ (1 + t2)x = 0, x(0) = 1, ẋ(0) = 0

(iv) ẍ− (sin t)x = 0, x(π) = 1, ẋ(π) = 0

3. Show that the general solution of the Chebyshev differential equation

(1 − t2)ẍ− tẋ+ a2x = 0

is given by

x(t) = c0

[

1 +

∞
∑

n=1

(−a)2(22 − a2)......((2n− 2)2 − a2)

(2n)!
t2n

]

+ c1

[

t+

∞
∑

n=1

(1 − a2)(32 − a2)......((2n− 1)2 − a2)

(2n− 1)!
t2n+1

]

4. Show that the two linearly independent solutions of the following differ-
ential equation

t2ẍ+ t(t− 1

2
)ẋ+

1

2
x = 0

are given by

x1(t) = |t|
∞
∑

n=0

(−1)n (2t)n

(2n+ 1)(2n− 1)......3.1

x2(t) = |t| 12
∞
∑

n=0

(−1)n t
n

n!

5. Show that the two linearly independent solutions of the differential equa-
tion

t(1 − t)ẍ + (1 − t)ẋ− x = 0
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are given by

x1(t) = 1 +

∞
∑

n=1

1.2.5......((n− 1)2 + 1)

(n!)2
tn

x2(t) = x1(t)ln|t| + 2

(

∞
∑

n=1

1.2.5.....((n− 1)2 + 1)

(n!)2

)

×
(

n
∑

k=1

k − 2

k((k − 1)2 + 1)

)

tn

6. Using Rolle’s theorem show that between two consucative zeros of Jn(t),
there exists precisely one zero of Jn+1(t).

7. Prove the following identities for Bessel functions Jµ(t), µ ∈ <.

(i)
∫

tµJµ−1(t)dt = tµJµ(t) + c

(ii)
∫

t−µJµ+1(t)dt = −t−µJµ(t) + c

(iii)
∫

Jµ+1(t)dt =
∫

Jµ−1(t)dt− 2Jµ(t)

8. Show that

‖Jn(klmt)‖2 =

∫ 1

0

tJ2
n(klmt)dt =

1

2
J2

n+1(klm)

9. Using Rodrigues formula, show that

Pn(0) =











0, n is odd

(−1)n/2 1.3....n− 1

2.4.....n
, n is even

10. Let p(t) be a polynomial of degree n. Show that p(t) is orthogonal to all
Legendre polynomials of degree strictly less than n.
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