
§2 Linear Transformations and Matrices

§2.1 Linear Transformations
Definition Let V1 and V2 be vector spaces. A linear transformation is a
function

T : V1 → V2

with the following properties:

1. For any v, w ∈ V1 we have T (v + w) = T (v) + T (w).

2. For any v ∈ V1, r ∈ R we have T (rv) = rT (v).

In other words, a linear transformation is a function between vector spaces
which is compatible with addition and scalar multiplication. In many cases,
the parentheses in the notation will be dropped and we simply write Tv for
T (v). The following proposition is easy but very useful:

Proposition Let T : V1 → V2 be a linear transformation and let 01 and 02

be the zero vectors in V1 and V2. Then we have T (01) = 02.

proof Multiplying the scalar 0 by any vector yields the zero vector. Con-
sequently, we have

T (01) = T (001) = 0T (01) = 02

where the second equality follows from the second part of the definition of
linearity. �
Definition A bijective linear transformation T : V1 → V2 is called a linear
isomorphism. (We shall usually suppress the adjective ‘linear’.)

Proposition Let T : V1 → V2 be a linear isomorphism and let T−1 : V1 → V2

be its inverse. Then T−1 is also a linear transformation.

proof By the definition of the inverse T ◦ T−1 = IdV2 and T−1 ◦ T = IdV1 .
Let v, w ∈ V2; we may write v = T (T−1(v)) and w = T (T−1(w)). We have

T−1(v + w) = T−1(T (T−1(v)) + T (T−1(w)))

= (T−1 ◦ T )[T−1(v) + T−1(w)]

= T−1(v) + T−1(w)

where the second equality follows from the fact that T is linear. If we let
r ∈ R be a scalar, then

T−1(rv) = T−1(rT (T−1(v))) = (T−1 ◦ T )[rT−1(v)] = rT−1(v).

Again, the second equality follows from the fact that T is linear. �

§2.2 Examples of Linear Transformations
We begin by giving an example of a function which is not a linear transfor-

mation. Let f : R2 → R be the function given by the rule f(x, y) = x2+y+1.
Since f(0, 0) = 1 6= 0 we conclude by the proposition above that f is not
linear.



We now give some examples of linear transformations. Let T : R → R be
given by the rule

T (x) = ax

where a ∈ R. To verify that T is a linear transformation, we must first check
that for any x, y ∈ R

T (x + y) = a(x + y) = ax + ay = T (x) + T (y).

Furthermore, we must also check that

T (rx) = a(rx) = r(ax) = rT (x)

for any scalar r.
Let T : R2 → R2 be given by the rule

T (x, y) = (ax + by, cx + dy)

where a, b, c, d ∈ R. Then T is also a linear transformation (the proof is left
as an exercise).

Now we give a more exotic example. Let S be the vector space of se-
quences described above, and define T : S → S by the rule

T ((s1.s2, s3, . . . )) = (s2, s1, s3, . . . ).

In other words, we exchange the first two terms of the sequence. We verify
that T is a linear transformation. Given sequences s = (sn), t = (tn) ∈ S, we
have

T (s + t) = T ((s1 + t1, s2 + t2, . . . ))

= (s2 + t2, s1 + t1, . . . )

= (s2, s1, . . . ) + (t2, t1, . . . ) = T (s) + T (t).

For any scalar r we also have

T (rs) = (rs2, rs1, rs3, . . . ) = r(s2, s1, . . . ) = rT (s).

Thus T is a linear transformation.

§2.3 Basic Properties of Matrices
Definition A matrix A is a rectangular array of real numbers

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 .

The real numbers in the matrix are called its entries. The rows of the ma-
trix are the horizontal sequences of entries and the columns are the vertical
sequences of entries. We will use aij to denote the entry of the matrix A in
the ith row and the jth column. (Notice the convention that the row number



precedes the column number). A matrix with m rows and n columns is called
an m× n matrix.

Consider the matrix

A =

(
3 2 1
0 2 −1

)
.

We have

a11 = 3 a12 = 2 a13 = 1

a21 = 0 a22 = 2 a23 = −1

The matrix has two rows(
3 2 1

)
and

(
0 2 −1

)
and three columns (

3
1

) (
2
2

) (
1
−1

)
.

Thus A is a 2× 3 matrix.
An m× 1 matrix is called a column vector and a 1× n matrix is called a

row vector. An n× n matrix is called a square matrix.
We now describe some operations on matrices. Let M(m, n) denote the

set of all m× n matrices, and let A, B ∈ M(m, n) so that

A =


a11 . . . a1n
...

...
am1 . . . amn

 B =


b11 . . . b1n
...

...
bm1 . . . . . . bmn

 .

Then A + B ∈ M(m,n) is defined as the matrix with entries aij + bij, i.e.

A + B =


a11 + b11 . . . a1n + b1n

...
...

am1 + bm1 . . . amn + bmn

 .

If r ∈ R is a scalar, then we define rA ∈ M(m, n) to be the matrix with
entries raij

rA =


ra11 . . . ra1n

...
...

ram1 . . . ramn

 .

Taking these operations to be addition and scalar multiplication, we find that
M(m,n) has the structure of a vector space:

Theorem The set M(m, n) of all m× n matrices forms a vector space with
respect to the operations defined above.

The proof is left as an exercise. �

Remark Note that the space M(1, n) of row vectors is the same as Rn. Fur-
thermore, the space M(m, 1) of column vectors is just Rm ‘written vertically’.



We will often take the liberty of writing elements of Rm as column vectors
in M(m, 1).

§2.4 Matrices and Linear Transformations
The most important aspect of matrices is that they can be used to construct
linear transformations. We describe how they may be used to transform
vectors in Rn into vectors in Rm. We start with an illustrative example.

Let A be the 3× 2 matrix

A =

2 1
3 0
5 −2

 .

This matrix can be used to construct a function TA : R2 → R3, given by the
rule

TA(x1, x2) =

 2x1 + x2

3x1

5x1 − 2x2

 .

Note that we are writing the elements of R3 as column vectors. We encourage
the reader to verify that TA is a linear transformation. Notice that TA(1, 0)
equals the first column of A and TA(0, 1) equals the second column.

We generalize this now to arbitrary matrices. Let A be an m×n matrix.
We define a function TA : Rn → Rm by the rule

TA(x) = TA((x1, . . . , xn)) =


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn


Again, we write the elements of Rm as column vectors.

We prove that TA is linear. For any x, x′ ∈ Rn we have

TA(x + x′) = TA((x1 + x′
1, . . . , xn + x′

n))

=


a11(x1 + x′

1) + . . . + a1n(xn + x′
n)

...
am1(x1 + x′

1) + . . . + amn(xn + x′
n)



=


a11x1 + . . . + a1nxn

...
am1x1 + . . . + amnxn

+


a11x

′
1 + . . . + a1nx

′
n

...
am1x

′
1 + . . . + amnx

′
n


= TA(x) + TA(x′).



Furthermore, for any scalar r we have

TA(rx) = TA((rx1, . . . , rxn))

=


a11rx1 + . . . + a1nrxn

...
am1rx1 + . . . + amnrxn



= r


a11x1 + . . . + a1nxn

...
am1x1 + . . . + amnxn


= rTA(x).

We have proven the following theorem:

Theorem Let A be an m × n matrix. Then the function TA : Rn → Rm

defined above is a linear transformation.

The function TA is called the linear transformation associated to the matrix
A.

Our next goal is to classify linear transformations T : Rn → Rm. We
have already seen that m × n matrices give many examples of such linear
transformations. We shall prove that these are the only examples.

First we introduce some notation. The vectors e1 = (1, 0, . . . , 0), e2 =
(0, 1, 0 . . . , 0), . . . , en = (0, . . . , 0, 1) in Rn will be called the standard ba-
sis vectors. Generally, all the components of ei are zero except for the ith
component which is one. Any vector x = (x1, . . . , xn) ∈ Rn may be written

x = x1e1 + x2e2 . . . + xnen.

If T : Rn → Rm is a linear transformation then we have

T (x) = T (x1e1 + . . . + xnen) = x1T (e1) + . . . + xnT (en).

Consequently T is entirely determined by its values on the standard basis
vectors, which we may write

T (e1) =


a11

a21
...

am1

 . . . T (en) =


a1n

a2n
...

amn

 .

Combining this with the previous formula, we obtain

T (x) = x1


a11

a21
...

am1

+ . . . + xn


a1n

a2n
...

amn



=


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn





Consequently, T = TA for the matrix

A =


a11 . . . a1n
...

...
am1 . . . amn

 .

We have proved the following theorem:

Theorem Let T : Rn → Rm be a linear transformation. Then T = TA for
some A ∈ M(m,n). The jth column of A is equal to T (ej) for j = 1, . . . , n.

Putting the previous two theorems together, we obtain the following

Corollary There is a one-to-one correspondence between linear transforma-
tions T : Rn → Rm and m× n matrices.

Remark There is a more sophisticated version of this result. In the ex-
ercises, we shall see that the set of linear transformations from Rn to Rm

forms a vector space L(Rn, Rm). The ideas above may be used to show that
L(Rn, Rm) is isomorphic to M(m, n).

§2.5 Composition and Matrix Multiplication
Theorem Let S : V1 → V2 and T : V2 → V3 be linear transformations. Then

T ◦ S : V1 → V3

is also a linear transformation.
proof Let v, w ∈ V1. We have

(T ◦ S)(v + w) = T (S(v + w)) = T (S(v) + T (w)) = T (S(v)) + T (S(w))

= (T ◦ S)(v) + (T ◦ S)(w)

(the second and third equalities rely on the linearity of S and T ). If r is any
scalar then

(T ◦ S)(rv) = T (S(rv)) = T (rS(v)) = rT (S(v)) = r(T ◦ S)(v)

(again, the second and third equalities use the linearity of S and T ). There-
fore, T ◦ S is linear. �

Let A be an n × k matrix and B an m × n matrix. Let TA : Rk → Rn

and TB : Rn → Rm denote the linear transformations associated to A and
B. The theorem above implies that TB ◦ TA is linear. Using the results from
§2.4, we conclude that

TB ◦ TA = TC

for some m× k matrix C. How do we compute C from A and B?
We derive a formula for C in terms of A and B. To prevent possible

confusion, we now use e1, . . . , ek to denote the standard basis for Rk and
f1, . . . , fn to denote the standard basis for Rn. The key to the formula is the
fact that the columns of C are equal to the vectors TC(e1), . . . , TC(ek). Let’s



compute TC(e1) to see the general pattern:

TC(e1) = (TB ◦ TA)(e1) = TB(TA(e1))

= TB


a11

a21
...

an1


= a11TB(f1) + a21TB(f2) + . . . an1TB(fn)

= a11


b11

b21
...

bm1

+ a21


b12

b22
...

bm2

+ . . . an1


b1n

b2n
...

bmn



=

 b11a11 + b12a21 + . . . + b1nan1

b21a11 + b22a21 + . . . + b2nan1

bm1a11 + bm2a21 + . . . + bmnan1

 .

The same computation shows that

TC(ej) =

 b11a1j + b12a2j + . . . + b1nanj

b21a1j + b22a2j + . . . + b2nanj

bm1a1j + bm2a2j + . . . + bmnanj

 .

We summarize this computation in the following proposition:

Proposition Let A be an n× k matrix and B am m× n matrix. Let C be
the matrix for the composite linear transformation TB ◦TA : Rk → Rm. This
is a m× k matrix with entry

ai1b1j + ai2b2j + . . . ainbnj

in the ith row and jth column.
Exercises

Transposes

1)Let T : R2 → R2 be the linear transformation defined by the rule T (x, y) =
(x + y, x + 2y).

a)Show that T is injective.
b)Show that T is surjective.
c)Compute a formula for the inverse of T .

2)Let V and W be fixed vector spaces. Let L(V, W ) be the set of all linear
transformations from V to W . Given linear transformations T1 and T2 in
L(V, W ) then we can define T1 + T2 to be the linear transformation given by
(T1 + T2)(v) = T1(v) + T2(v) for all v ∈ V . Also if r ∈ R, then we can define
rT to be the linear transformation given by (rT )(v) = rT (v) for all v ∈ V .
Show that with the above definitions of addition and scalar multiplication,
L(V, W ) is a real vector space.

3)Let V and W be fixed vector spaces. Let T : V → W be a linear transfor-
mation. Let K be the subset of V given by

K = {v ∈ V : T (v) = 0}



Show that K is also a vector space. This vector space is called the kernel of
T and is denoted ker(T ).

Let L be the subset of W given by

L = {w ∈ W : ∃v ∈ V 3 T (v) = w}

Show that L is a vector space. This vector space is often called the image of
T and is denoted im(T ).

Hint: For these two questions, you basically need to check that these subsets
are closed under addition and scalar multiplication.


